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Sin dalla sua compiuta disamina da parte di Aristotele, l’idea di categoria
gioca un ruolo fondamentale nella storia del pensiero umano. Non fa me-
raviglia, dunque, che quando a metà degli anni ’40 i matematici Samuel
Eilenberg e Saunders Mac Lane proposero una teoria che formalizzasse le
idee intuitive della topologia algebrica abbiano tratto ispirazione proprio da
questo concetto per sviluppare un nuovo linguaggio.
Il formalismo della teoria delle categorie, originato dal pionieristico articolo
General Theory of Natural Equivalences di Eilenberg e Mac Lane, ha poi
conosciuto un enorme sviluppo grazie al lavoro di Alexander Grothendieck
che ebbe la fenomenale intuizione di applicare questa teoria per rifondare
la geometria algebrica, introducendo gli schemi e i topoi (questi ultimi tro-
veranno significative applicazioni nella logica matematica), nonché il merito
di definire le categorie abeliane e pensarle come il giusto ambiente al quale
estendere l’algebra omologica.
Nel corso del tempo la teoria delle categorie è diventata a tutti gli effetti
un’area della matematica, ampliandosi ed evolvendosi sempre più e cono-
scendo ulteriori generalizzazioni − come le n-categorie e le ∞-categorie −
e sempre nuove applicazioni, dall’algebra universale alla fisica matematica
all’informatica teorica, e oggigiorno costituisce una fiorente area di ricerca,
spesso intrecciandosi con altre aree della matematica.
Il teorema di rappresentabilità di Brown si situa per l’appunto a metà strada
fra la teoria delle categorie e la topologia algebrica, per l’esattezza la teo-
ria dell’omotopia. Nato infatti come teorema di natura topologica, è stato
poi generalizzato a diversi contesti, che permettono un suo utilizzo anche
nell’ambito della geometria algebrica. In questa sede tratteremo la sua ver-
sione per le categorie triangolate, definite per la prima volta proprio da uno
studente di Grothendieck, Jean-Louis Verdier, dopo aver osservato le pro-
prietà delle categorie derivate, da lui stesso precedentemente introdotte.
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Le categorie triangolate, insieme a quelle abeliane, costituiscono il punto
chiave della seguente trattazione: ci occuperemo infatti di una particolare
tipologia di funtori, detti coomologici per enfatizzare la loro attinenza con
le coomologie usuali, che si definiscono proprio tra una categoria triangolata
e una abeliana (nel caso del teorema di Brown, quella dei gruppi abeliani).
Se sono verificate alcune ipotesi, essi assumono una forma molto semplice,
cioè sono rappresentabili. A tal proposito ricordiamo la

Definizione. Sia C una categoria localmente piccola. Diciamo che un fun-
tore F : Cop → Set è rappresentabile se esiste un oggetto X di C e un
isomorfismo naturale ϕ : HomC(−, X)→ F .

La rappresentabilità (che si definisce in maniera simile anche per i funtori
covarianti) è una proprietà cruciale perché permette di studiare i funtori e
le trasformazioni naturali tra di essi analizzando gli oggetti rappresentanti
e i loro morfismi, che spesso sono più facili da trattare.

Questa tesi est omnis divisa in partes tres. Il primo capitolo servirà a pre-
sentare le nozioni fondamentali e a dare alcuni risultati preliminari: infatti
definiremo le categorie additive, struttura basilare arricchendo la quale si
potranno introdurre le categorie abeliane e le categorie triangolate e passe-
remo poi a definire i funtori coomologici.
Nel secondo capitolo vedremo ulteriori costruzioni, iniziando da quella di
colimite omotopico che servirà a costruire effettivamente l’oggetto che rap-
presenta il funtore coomologico, per poi definire particolari famiglie di og-
getti della nostra categoria triangolata la cui esistenza sarà una premessa
indispensabile nella formulazione e quindi nella dimostrazione del teorema.
Si noti che, per essere coerenti con la definizione di funtore rappresentabile
data qui sopra, la rappresentabilità del funtore coomologico si deve inten-
dere pensando Ab come categoria concreta, cioè sottocategoria di Set.
Nel terzo e ultimo capitolo ci discosteremo leggermente dai primi due, ritor-
nando da dove tutto è cominciato e riprendendo lo spirito topologico della
formulazione originaria del teorema di Brown: inizieremo ricordando, senza
svilupparle in dettaglio, alcune idee fondamentali della topologia algebrica
per poi definire il funtore di coomologia singolare e vedere che in questo caso
particolare lo spazio rappresentante è piuttosto semplice ma al contempo di
indubbio valore teorico.
Sebbene queste due versioni siano apparentemente diverse, è interessante
notare che i metodi dimostrativi usati per provare il teorema di Brown nelle
sue molteplici forme si assomigliano molto e in effetti, come la ricerca con-
temporanea ha reso evidente, questa analogia è fondata sul fatto che tutte le
categorie triangolate di uso comune siano categorie dell’omotopia di un certo
tipo di ∞-categorie, alle quali si può generalizzare ulteriormente il teorema
di rappresentabilità.



iv Capitolo 0. Introduzione

Nella seguente trattazione cercheremo di definire di volta in volta i concetti
di cui ci serviremo, ma nonostante ciò saremo necessariamente costretti a
considerare come prerequisiti molti risultati e idee basilari di teoria delle
categorie, ad esempio faremo spesso uso del lemma (e dell’embedding) di
Yoneda. La teoria necessaria si trova sviluppata nei primi capitoli del ce-
lebre libro di Mac Lane [ML71]. Daremo per noto anche qualche lemma
fondamentale di algebra omologica, come ad esempio il lemma dei cinque.
Tuttavia la conoscenza dell’algebra omologica non è indispensabile per la
comprensione del testo, anche se può essere utile per gli esempi e come con-
testualizzazione.

In tutto il corso della tesi useremo alcune convenzioni ed alcuni simboli per
snellire l’elaborato, sia graficamente che concettualmente. Nella fattispecie
le categorie considerate saranno sempre da intendersi piccole (sia Ob(C) che
Hom(C) sono insiemi e non classi proprie) o localmente piccole (per ogni
coppia di oggetti A e B in C, HomC(A,B) è un insieme) e similmente lo
saranno i (co)limiti, i.e. saranno indicizzati da categorie piccole. Scriveremo
X ∈ C invece di X ∈ Ob(C) per non appesantire la notazione. La catego-
ria dei funtori fra due categorie C e D sarà indicata con Hom(C,D) o con
[C,D] oppure con DC. La categoria dei prefasci d’insiemi verrà denotata Ĉ
e infine si useranno le notazioni hA = Hom(−, A) e hA = Hom(A,−).



Capitolo 1

Categorie triangolate

1.1 Categorie additive e categorie abeliane
Definizione 1.1. Una categoria preadditiva è una categoria C tale che per
ogni X,Y ∈ C, HomC(X,Y ) è munito di una struttura di gruppo abeliano
e la composizione di morfismi è bilineare.

Un’importante proprietà delle categorie preadditive è la seguente

Proposizione 1.2. Sia C una categoria preadditiva e siano X,Y ∈ C. Se
X × Y esiste in C allora esiste anche X ⊔ Y e questi sono isomorfi.

Dimostrazione. cfr. corollario 8.2.4. in [KS06]

Motivati da questo risultato, i biprodotti (chiamati anche somme dirette) si
indicheranno generalmente con X ⊕ Y .
Osservazione 1.3. Sia Grp la categoria avente come oggetti i gruppi e come
morfismi gli omomorfismi di gruppi. La proposizione precedente rende evi-
dente che Grp non può essere una categoria preadditiva. Infatti, ricordando
che il prodotto fra due gruppi è il prodotto diretto e il coprodotto è il pro-
dotto libero, è immediato verificare che esistono gruppi per cui il prodotto e
il coprodotto sono molto diversi. Pensiamo per esempio a Z2×Z2 e Z2 ∗Z2:
quest’ultimo è addirittura infinito!

Definizione 1.4. Siano C e D due categorie preadditive.
Un funtore F : C → D si dice additivo se per ogni A,B ∈ C la funzione
f : HomC(A,B)→ HomD(F (A), F (B)) è un omomorfismo di gruppi.

Definizione 1.5. Una categoria preadditiva si dice additiva se ha un oggetto
zero e ogni coppia di oggetti ha un biprodotto.

Definizione 1.6. Sia C una categoria additiva e f : X → Y un morfismo
in C. Il kernel di f , se esiste, è il pullback di X f−→ Y ← 0. Il cokernel di f ,
se esiste, è il kernel di f in Cop.

1



2 Capitolo 1. Categorie triangolate

K

��}}z
z
z
z

0

��@
@@

@@
@@

@

kerf

0

::
// X

f // Y

X

0

%%f //

0 ��?
??

??
??

? Y

��

// cokerf

||x
x
x
x
x

Q

È consuetudine chiamare kernel sia l’oggetto precedentemente definito che
il morfismo kerf → X, dunque in seguito confonderemo i due concetti, es-
sendo chiaro dal contesto a cosa ci riferiamo. Ciò conduce ad un leggero
abuso di notazione: difatti quando diciamo che due morfismi sono isomorfi
intendiamo che lo sono i loro domini o codomini o il dominio dell’uno col co-
dominio dell’altro e inoltre il quadrato ottenuto componendo gli isomorfismi
e i morfismi dati è commutativo.

Definizione 1.7. Una categoria additiva è chiamata preabeliana se ogni
morfismo ha sia un kernel che un cokernel.

Definizione 1.8. Una categoria preabeliana è detta abeliana se ogni mono-
morfismo è il kernel di un qualche morfismo e ogni epimorfismo è il cokernel
di un qualche morfismo

Proposizione 1.9. Si hanno le seguenti proprietà:

1. In ogni categoria additiva, i kernel sono monomorfismi e i cokernel
sono epimorfismi.

2. Sia φ : A → B un morfismo in una categoria additiva. Se φ ha un
kernel, allora φ è un monomorfismo se e solo se kerφ ∼= 0. Se φ ha un
cokernel, allora φ è un epimorfismo se e solo se cokerφ ∼= 0

3. Ogni categoria abeliana è bilanciata, ovvero ogni morfismo che è con-
temporaneamente un monomorfismo e un epimorfismo è un isomorfi-
smo.

4. In ogni categoria abeliana, dati un epimorfismo e ed un monomorfismo
m, risulta che e = coker(ker(e)) e m = ker(coker(m)).

Dimostrazione. Per i primi tre punti si veda cap. IX lemmi 1.4, 1.5 e 1.9 di
[Al09]. Dimostriamo il quarto punto. Sia e : Y → Z un epimorfismo, per
definizione di categoria abeliana ∃f : X → Y t.c. e = cokerf . Inoltre esiste
un morfismo k = ker(e). Combinando i diagrammi di kernel e cokernel si
ottiene il diagramma

X

0

&&

f ′

���
�
�

f //

0

&&
Y

e //

g

��

cokerf

g′

||y
y
y
y
y

ker(e) 0 //

k

<<zzzzzzzzz
Q
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in cui sono presenti anche i morfismi zero X 0−→ Q e ker(e) 0−→cokerf . Se g è
tale che g◦k = 0 (che esiste perché nelle categorie additive per ogni coppia di
oggetti c’è un morfismo zero) allora g ◦k ◦f ′ = g ◦f = 0 e quindi1 g = g′ ◦ e,
cioè e = cokerk = coker(ker(e)). Dualmente, ciascun monomorfismo è kernel
del proprio cokernel.

Definizione 1.10. Sia f un morfismo di una categoria abeliana, si defi-
niscono imf = ker(cokerf) e coimf = coker(kerf), dette rispettivamente
immagine e coimmagine di f .

Questa definizione permette un’ulteriore caratterizzazione delle categorie
abeliane. Vale infatti il seguente risultato:

Proposizione 1.11. Una categoria preabeliana C è abeliana se e solo se il
morfismo2 canonico coimf 99K imf è un isomorfismo per ogni f ∈ Hom(C).

Dimostrazione. (⇐) Sia f : A → B un monomorfismo, allora il suo kernel
è zero e dunque la coimmagine è l’identità (di A). Poiché immagine e coim-
magine sono isomorfe allora la mappa dal dominio alla coimmagine rende il
dominio un kernel. Dualmente si vede che ogni epi è un cokernel.
(⇒) cfr. cap. IX teorema 1.13 di [Al09].

Osservazione 1.12. Si può vedere che:

(i) se I è un insieme e {Ci}i∈I è una famiglia di categorie abeliane, allora
la categoria prodotto

∏
i∈I Ci è abeliana.

(ii) se B è una categoria piccola e C è una categoria abeliana, la categoria
CB dei funtori da B a C è abeliana. Per esempio, se F,G : B → C
sono due funtori e φ : F → G è un morfismo (una trasformazione
naturale), si definisce il funtore X 7→ N(X) = ker(F (X) −→ G(X)).
Chiaramente, N è il kernel di φ.

(iii) se C è abeliana, allora la categoria opposta Cop è abeliana. Si noti che
per ogni f : X → Y in C, risulta ker(fop) ∼= (coker(f))op, coker(fop) ∼=
(ker(f))op, im(fop) ∼= (coim(f))op e coim(fop) ∼= (im(f))op.

Esempio 1.13. La categoria dei moduli liberi è additiva ma non preabeliana,
infatti dalla teoria della forma normale di Smith sappiamo che, in generale,
il coker di un omomorfismo di moduli liberi non è un modulo libero.
Esempio 1.14. La categoria Ban degli spazi di Banach complessi possiede
tutti i kernel e i cokernel. Se f : X → Y è un morfismo di spazi di Banach,
allora si verifica facilmente che kerf = f−1(0) e cokerf = Y /imf . Ciono-
nostante Ban non è abeliana, infatti esistono applicazioni lineari continue

1Questa fattorizzazione è unica perché g′ ◦ e = g = g′′ ◦ e ⇒ g′ = g′′ poiché e è epi.
2L’esistenza e unicità di questo morfismo nelle categorie preabeliane discende dalle

proprietà universali di kernel e cokernel.



4 Capitolo 1. Categorie triangolate

f che sono iniettive e hanno immagine densa e non chiusa. Per una f del
genere, kerf = cokerf = 0, coimf ∼= X e imf ∼= Y , ma coimf 99K imf non
è un isomorfismo.
Esempio 1.15. Abbiamo visto che Grp non è una categoria preadditiva. Se
ci restringiamo però alla sua sottocategoria piena Ab otteniamo l’esempio
principe di categoria abeliana: gli hom-sets sono resi gruppi abeliani defi-
nendo puntualmente la somma di morfismi, il gruppo banale {0} è l’oggetto
zero, i biprodotti sono i prodotti diretti finiti di gruppi (che coincidono con
le somme dirette), kernel e cokernel sono definiti nella maniera usuale e in-
fine l’isomorfismo fra immagine e coimmagine non è altro che il teorema
fondamentale d’omomorfismo3. Questo esempio si generalizza alla categoria
R-Mod dei moduli su un anello R.
L’importanza delle categorie abeliane risiede soprattutto nel fatto che es-
se costituiscono il setting più generale per l’algebra omologica: in questo
contesto è infatti possibile definire le successioni esatte.

Definizione 1.16. Sia C una categoria abeliana. Una successione di mor-
fismi X ′ f−→ X

g−→ X ′′ è detta esatta (in X) se:

1. g ◦ f = 0 (condizione di complesso)4

2. imf ∼= kerg (condizione di esattezza)

A questo punto si possono ricavare tutti i principali risultati dell’algebra
omologica (a partire dai classici snake lemma e five lemma) con argomenti
di natura categoriale, ovvero ragionando sulle frecce piuttosto che sui singoli
oggetti. Tuttavia, più concretamente, ogniqualvolta si ha a che fare con
categorie abeliane è utile pensare di lavorare con categorie di moduli, che
sono generalmente più facili da trattare. Questo atteggiamento è giustificato
dal seguente teorema (che non dimostriamo).

Teorema 1.17. (Freyd-Mitchell’s embedding theorem) Sia A una categoria
abeliana piccola. Allora esiste un anello R e un funtore pienamente fedele
ed esatto A→ R-Mod.

Questo funtore dà luogo ad un’equivalenza di categorie fra A e una sotto-
categoria piena di R-Mod.

1.2 Categorie triangolate
Prima di passare alle categorie triangolate è necessario introdurre alcuni
concetti preliminari. Diamo quindi le seguenti definizioni.

3Facile verificare che coimf = X/kerf per ogni morfismo f avente come dominio X
4In realtà i complessi si possono definire in categorie additive. L’abelianità della

categoria serve per il punto 2.



1.2. Categorie triangolate 5

Definizione 1.18. Una categoria con traslazione (D, T ) è il dato di una
categoria D e di un’auto-equivalenza T : D ∼−→ D. Il funtore T è chiamato
funtore di traslazione (o anche funtore di shift oppure sospensione e in tal
caso viene spesso indicato con Σ).
Definizione 1.19. Un funtore tra categorie con traslazione F : (D, T ) →
(D′, T ′) è un funtore F : D→ D′ che commuta con lo shift, ovvero per cui
vale l’isomorfismo F ◦ T ∼= T ′ ◦ F .
Se D e D′ sono categorie additive e F è additivo allora diremo che F è un
funtore di categorie additive con traslazione.
Definizione 1.20. Sia (D, T ) una categoria additiva con traslazione.

1. Un triangolo in D è una successione di morfismi

X
f−−→ Y

g−−→ Z
h−−→ TX

2. Un morfismo di triangoli è un diagramma commutativo:

X

α

��

f // Y

β

��

g // Z
h //

γ

��

TX

T (α)

��
X ′ f ′

// Y ′ g′ // Z ′ h′
// TX ′

Fatte queste premesse possiamo enunciare la seguente
Definizione 1.21. Una categoria triangolata è una categoria additiva con
traslazione (D, T ) munita di una famiglia di triangoli, detti triangoli distinti
(d.t. per brevità), che soddisfa gli assiomi seguenti:

TR0 Un triangolo isomorfo ad un d.t. è un d.t.

TR1 Il triangolo X idX−−→ X −→ 0 −→ TX è un d.t.

TR2 Per ogni f : X −→ Y esiste un d.t. X f−−→ Y −→ Z −→ TX.

TR3 Se un triangolo X f−−→ Y
g−−→ Z

h−−→ TX è distinto allora
Y

−g−−→ Z
−h−−→ TX

−T (f)−−−−→ TY e T−1Z
−T−1(h)−−−−−−→ X

−f−−→ Y
−g−−→ Z sono distinti

TR4 Dati due d.t. X f−−→ Y
g−−→ Z

h−−→ TX e X ′ f ′
−−→ Y ′ g′−−→ Z ′ h′

−−→ TX ′

e due morfismi α : X → X ′ e β : Y → Y ′ con f ′ ◦ α = β ◦ f , esiste un
morfismo γ : Z → Z ′ che dà luogo ad un morfismo di d.t.:

X

α

��

f // Y

β

��

g // Z
h //

γ

��

TX

T (α)

��
X ′ f ′

// Y ′ g′ // Z ′ h′
// TX ′
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TR5 Dati tre d.t.

X
f−−→ Y

h−−→ Z ′ −→ TX,
Y

g−−→ Z
k−−→ X ′ −→ TY ,

X
g◦f−−→ Z

l−−→ Y ′ −→ TX,

esiste un d.t. Z ′ u−−→ Y ′ v−−→ X ′ w−−→ TZ ′ che fa commutare il diagramma:

X

id

��

f // Y
g

��

h // Z ′ //

u

��

TX

id

��
X

g◦f //

f

��

Z
l //

id

��

Y ′ //

v

��

TX

T (f)

��
Y

g //

h

��

Z
k //

l

��

X ′ //

id

��

TY

T (h)

��
Z ′ u // Y ′ v // X ′ w // TZ ′

Il precedente diagramma è spesso chiamato diagramma ottaedrale. Infatti
può essere scritto usando i vertici di un ottaedro

Y ′

v

''OO
OOO

OOO
OOO

OOO

����
��
��
��
��
��
��
��
��
�

Z ′

+1

��

u

77oooooooooooooo
X ′+1oo

+1

~~~~
~~
~~
~~
~~
~~
~~
~~
~~
~

X //

f
''PP

PPP
PPP

PPP
PPP

Z

OO

__@@@@@@@@@@@@@@@@@@@

Y

__@@@@@@@@@@@@@@@@@@ g

77nnnnnnnnnnnnnnn

dove, per esempio, per X ′ +1−−→ Y si intende un morfismo X ′ → TY .
Una categoria additiva con traslazione si dice pretriangolata se valgono tutti
gli assiomi tranne l’ultimo.
Osservazione 1.22. Si verifica facilmente che se (D, T ) è una categoria trian-
golata allora (Dop, T op) è una categoria triangolata, avendo indicato T op =
op ◦ T−1 ◦ op−1.
Per semplicità di notazione d’ora in avanti indicheremo le categorie triango-
late con T, sottintendendo il funtore di shift.

Definizione 1.23. Un funtore triangolato F : T −→ T′ è un funtore che
commuta con lo shift e preserva i d.t.

Nel caso in cui tale funtore sia un’inclusione di categorie si dice che T è una
sottocategoria triangolata di T′.
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Esempio 1.24. Molte categorie di uso comune in algebra omologica e in topo-
logia algebrica sono triangolate. In effetti non mancano esempi di categorie
dell’omotopia che ammettono struttura di categoria triangolata: è il caso
della categoria dell’omotopia dei complessi di catene (per una dimostrazione
di questo fatto si veda [GM96] cap.IV teorema 9).

Proposizione 1.25. Se X f−→ Y
g−→ Z → TX è un d.t. allora g ◦ f = 0

Dimostrazione. Applicando TR1 e TR4 si ottiene un diagramma commu-
tativo

X
id //

id

��

X //

f

��

0 //

��

TX

id

��
X

f // Y
g // Z // TX

Quindi g ◦ f = 0 perché fattorizza attraverso lo 0.

1.3 Funtori coomologici
Definizione 1.26. Siano T una categoria triangolata e A una categoria
abeliana. Un funtore additivo F : T → A si dice coomologico se per ogni
d.t.

X → Y → Z → TX

in T, la successione di morfismi di A

F (X)→ F (Y )→ F (Z)

è esatta5.

Proposizione 1.27. Per ogni A ∈ T, i funtori HomT(A,−) e HomT(−, A)
sono coomologici.

Dimostrazione. Siano X → Y → Z → TX un d.t. e A ∈ T. Vogliamo far
vedere che

Hom(A,X)
f◦−→ Hom(A, Y )

g◦−→ Hom(A,Z)

è esatta, ovvero ∀φ : A → Y t.c. g ◦ φ = 0 ∃ψ : A → X t.c. φ = f ◦ ψ ma
questo segue dagli assiomi TR3 e TR4 per il diagramma

A
id //

��

A //

φ

��

0 //

��

TA

��
X

f // Y
g // Z // TX

Per dualità si dimostra la coomologicità di Hom(−, A).
5Alcuni autori definiscono i funtori coomologici su Top e chiamano questi omologici.
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Osservazione 1.28. In virtù dell’assioma TR3 un funtore coomologico induce
una successione esatta lunga

· · · → F (T−1Z)→ F (X)→ F (Y )→ F (Z)→ F (TX)→ · · ·

Proposizione 1.29. Consideriamo un morfismo di d.t.

X
f //

α

��

Y
g //

β

��

Z
h //

γ

��

TX

T (α)

��
X ′ f ′

// Y ′ g′ // Z ′ h′
// TX ′

Se α e β sono isomorfismi, lo è anche γ.

Dimostrazione. La dimostrazione è diretta conseguenza della proposizione
precedente: infatti applicando il funtore hA al diagramma di sopra otteniamo
un altro diagramma

hA(X)
f̃ //

α̃
��

hA(Y )
g̃ //

β̃
��

hA(Z)
h̃ //

γ̃
��

hA(TX)

T̃ (α)
��

T̃ (f) // hA(TY )

T̃ (β)
��

hA(X ′)
f̃ ′

// hA(Y ′)
g̃′ // hA(Z ′)

h̃′ // hA(TX ′)
T̃ (f ′) // hA(TY ′)

(dove α̃
def
= hA(α) etc.) le cui righe sono esatte e in cui α̃, β̃, T̃ (α), T̃ (β)

sono isomorfismi. Ma allora, per il lemma dei 5, anche γ̃ è un isomorfismo.
Usando l’embedding di Yoneda si deduce perciò che γ è un isomorfismo.

Corollario 1.30. Sia T′ una sottocategoria triangolata piena di T. Se
X → Y → Z → TX è un d.t. in T e X,Y ∈ T′ allora Z è isomorfo ad un
oggetto di T′.

Dimostrazione. Per l’assioma TR2 esiste un d.t. X
f−→ Y → Z ′ → TX

in T′ allora per TR4 esiste un isomorfismo tra X
f−→ Y → Z → TX e

X
f−→ Y → Z ′ → TX in T. Per la proposizione precedente si ha dunque

Z ∼= Z ′.

D’ora in poi supponiamo che le categorie triangolate ammettano somme
dirette infinite, nel qual caso ci riferiamo specificamente ai coprodotti: infatti
l’additività delle categorie triangolate garantisce soltanto che i prodotti e
i coprodotti finiti coincidano, mentre nel caso infinito potrebbero essere
diversi (si pensi ad esempio al caso dei moduli).

Proposizione 1.31. Lo shift di una categoria triangolata commuta con le
somme dirette.

Dimostrazione. Per definizione lo shift è un’autoequivalenza di categorie.
Ma allora, per il Teorema IV.4.1 di [ML71], ha sia aggiunto sinistro che
aggiunto destro e quindi commuta sia con i prodotti che con i coprodotti.



1.3. Funtori coomologici 9

Proposizione 1.32. Sia T una categoria triangolata e I un insieme. Si ha
che la somma diretta di triangoli distinti è ancora un triangolo distinto.

Dimostrazione. Sia Di : Xi → Yi → Zi → TXi una famiglia di triangoli
distinti indicizzata da I.
Sia D il triangolo

⊕
i∈I Di :

⊕
i∈I Xi →

⊕
i∈I Yi →

⊕
i∈I Zi →

⊕
i∈I TXi

Per TR2 esiste un d.t. D′ :
⊕

i∈I Xi →
⊕

i∈I Yi → Z → T (
⊕

i∈I Xi)
Per TR4 esistono morfismi di triangoli distinti Di → D′

Xi
//

��

Yi //

��

Zi
//

��

TXi

��⊕
i∈I

Xi
//
⊕
i∈I

Yi // Z // T
(⊕

i∈I
Xi

)

dove le prime due frecce sono iniezioni canoniche, l’ultima è l’immagine della
prima mediante il funtore T e la penultima esiste in virtù dell’assioma citato.
Questi morfismi inducono un morfismo D → D′. Sia A ∈ T e mostriamo che
HomT(D′, A) ∼= HomT(D,A): questo implicherebbe l’isomorfismo D ∼= D′

per l’embedding di Yoneda che a sua volta implicherebbe la tesi per l’assioma
TR0. Consideriamo perciò il diagramma

Hom
(
T

(⊕
i∈I

Yi

)
, A

)
∼= //

��

Hom
(⊕

i∈I
TYi, A

)
∼= //

��

∏
i∈I

Hom(TYi, A)

��

Hom
(
T

(⊕
i∈I

Xi

)
, A

)
∼= //

��

Hom
(⊕

i∈I
TXi, A

)
∼= //

��

∏
i∈I

Hom(TXi, A)

��

Hom(Z,A) //

��

Hom
(⊕

i∈I
Zi, A

)
∼= //

��

∏
i∈I

Hom(Zi, A)

��

Hom
(⊕

i∈I
Yi, A

)

��

Hom
(⊕

i∈I
Yi, A

)

��

∼= //
∏
i∈I

Hom(Yi, A)

��

Hom
(⊕

i∈I
Xi, A

)
Hom

(⊕
i∈I

Xi, A

)
∼= //

∏
i∈I

Hom(Xi, A)
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dove la prima colonna è esatta perché D′ è un d.t. e Hom(−, A) è coomolo-
gico, la seconda colonna è isomorfa alla terza perché l’hom-funtore controva-
riante manda coprodotti in prodotti e la terza colonna è esatta perché ogni
componente del prodotto è una successione esatta (poiché i Di sono d.t.) e
il prodotto di successioni esatte è una successione esatta. Inoltre tutte le
frecce orizzontali eccetto quella centrale sono isomorfismi e dunque, per il
lemma dei 5, lo è anche quella centrale. Ciò conclude la dimostrazione.

Come caso particolare di questa proposizione otteniamo il seguente

Corollario 1.33. Sia T una categoria triangolata.

1. Se X1 → Y1 → Z1 → TX1 e X2 → Y2 → Z2 → TX2 sono due d.t.
allora X1 ⊕X2 → Y1 ⊕ Y2 → Z1 ⊕ Z2 → TX1 ⊕ TX2 è un d.t.

2. Siano X,Y ∈ T. Allora X → X ⊕ Y → Y
0−→ TX è un d.t.

Le categorie triangolate sono un altro importante esempio di categorie ad-
ditive che non sono abeliane. Infatti vale la seguente

Proposizione 1.34. In una categoria triangolata ciascun monomorfismo
spezza6.

Dimostrazione. Consideriamo un monomorfismo f : X → Y e completiamo-
lo ad un d.t. X f−→ Y

g−→ Z
h−→ TX. Allora f ◦T−1(h) = 0 per l’assioma TR3

e la Proposizione 1.25, ma dato che f è mono deduciamo che T−1(h) = 0
e quindi h = 0. Dagli assiomi sappiamo che Z → Z → 0 → TZ e quindi
0 → Z → Z → 0 sono d.t. e inoltre anche il triangolo X → X → 0 → TX
è distinto. Ma allora, per quanto visto poc’anzi, la loro somma diretta
X → X ⊕ Z → Z

0−→ TX è un triangolo distinto. Per l’assioma TR4, le
identità su X e Z inducono un morfismo fra questo triangolo e il primo
e poiché due delle mappe sono isomorfismi, per la Proposizione 1.29, lo è
anche la terza, da cui la tesi.

Questo risultato è chiaramente falso in generale in una categoria abeliana:
un classico controesempio è la successione esatta 0 → Z2 → Z4

·2−→ Z2 → 0
in Ab.

6La nozione di successione esatta che spezza, in una categoria abeliana, è
completamente analoga a quella “classica”, che si definisce nel caso dei moduli.



Capitolo 2

Il teorema di
rappresentabilità di Brown

In questo capitolo supporremo che le categorie triangolate ammettano som-
me dirette1 arbitrarie purché piccole (in senso categoriale). In particolare,
le somme dirette numerabili esisteranno sempre.

2.1 Colimiti omotopici
I colimiti omotopici sono una costruzione tipica della moderna topologia
algebrica, tuttavia rivestono un’importanza fondamentale anche in algebra e
saranno un punto chiave nella dimostrazione del teorema di rappresentabilità
di Brown.

Definizione 2.1. Sia T una categoria triangolata e supponiamo di avere
una successione di morfismi in T

X0
j1−−→ X1

j2−−→ X2
j3−−→ X3

j4−−→ · · ·

Sia µ :
⊕∞

i=0Xi →
⊕∞

i=0Xi il morfismo indotto dai ji+1 : Xi → Xi+1, cioè
tale da far commutare il diagramma

Xi
� � //

ji+1

��

∞⊕
i=0

Xi

µ

��

Xi+1
� � //

∞⊕
i=0

Xi

1Intese come coprodotti.

11
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Un colimite omotopico della successione, indicato con holim−−−→Xi, è un oggetto
che completa il morfismo µ ad un triangolo distinto

∞⊕
i=0

Xi −→
∞⊕
i=0

Xi −→ holim−−−→Xi −→ T

( ∞⊕
i=0

Xi

)
Spesso la mappa µ è indicata con 1−shift e, con abuso di notazione, si
indicano con 1−shift anche le mappe da essa ricavate (ad esempio come
immagine mediante un qualche funtore).

Osservazione 2.2. Sfruttando l’assioma TR4 e la Proposizione 1.29, si os-
serva che un colimite omotopico (se esiste) è unico a meno di isomorfismo,
ma non a meno di un unico isomorfismo. Dalla definizione discende subi-
to che ci sono morfismi Xi −→ holim−−−→Xi compatibili con i ji. Inoltre, per
TR2, holim−−−→Xi esiste se esiste

⊕∞
i=0Xi. Dato che in tutto questo capitolo

lavoreremo con categorie triangolate che ammettono coprodotti numerabili,
quest’ultima condizione è sempre verificata.

Lemma 2.3. Supponiamo di avere due successioni

X0 −→ X1 −→ X2 −→ X3 −→ · · ·

Y0 −→ Y1 −→ Y2 −→ Y3 −→ · · ·

allora holim−−−→(Xi ⊕ Yi) ∼= (holim−−−→Xi)⊕ (holim−−−→Yi).

Dimostrazione. Poiché la somma diretta di due d.t. è un d.t., si ha il
seguente triangolo distinto

∞⊕
i=0

Xi ⊕
∞⊕
i=0

Yi →
∞⊕
i=0

Xi ⊕
∞⊕
i=0

Yi → (holim−−−→Xi)⊕(holim−−−→Yi)→ T

( ∞⊕
i=0

Xi ⊕
∞⊕
i=0

Yi

)
da cui si deduce l’isomorfismo.

Osservazione 2.4. Consideriamo un morfismo di successioni, cioè dei morfi-
smi fi : Xi → Yi che fanno commutare il diagramma

X0
j1 //

f0

��

X1
j2 //

f1

��

X2
j3 //

f2

��

X3
j4 //

f3

��

· · ·

Y0
k1 // Y1

k2 // Y2
k3 // Y3

k4 // · · ·

Allora, per ogni scelta dei colimiti omotopici, esiste un morfismo indotto
holim−−−→Xi −→ holim−−−→Yi. In particolare, successioni isomorfe hanno colimiti
omotopici isomorfi.
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2.2 Generatori di categorie triangolate
Definizione 2.5. Sia T una categoria triangolata e sia F ⊆ Ob(T) un
sottoinsieme non vuoto di oggetti di T. Si dice che F è un insieme di
generatori perfetti per T (o genera perfettamente T) se soddisfa le seguenti
condizioni:

(i) Per ogni X ∈ T t.c. Hom(C,X) ∼= 0 ∀C ∈ F , si ha che X ∼= 0

(ii) Per ogni famiglia numerabile {Xi → Yi}i∈I di morfismi in T tale che
la mappa Hom(C,Xi) → Hom(C, Yi) si annulla per ogni i ∈ I e ogni
C ∈ F , la mappa indotta

Hom
(
C,
⊕
i∈I

Xi

)
−→ Hom

(
C,
⊕
i∈I

Yi

)

si annulla per ogni C ∈ F .

Se esiste un insieme di generatori perfetti per T si dice che T è perfettamente
generata.

Osservazione 2.6. La seconda condizione può essere riformulata in molti
modi. Ciascuna delle condizioni seguenti è equivalente alla (ii):

(ii)´ Per ogni famiglia numerabile {Xi → Yi}i∈I di morfismi in T tale che
la mappa Hom(C,Xi)→ Hom(C, Yi) è surgettiva per ogni i ∈ I e ogni
C ∈ F , la mappa indotta Hom(C,

⊕
i∈I Xi) −→ Hom(C,

⊕
i∈I Yi) è

surgettiva per ogni C ∈ F .

(ii)˝ Per ogni famiglia numerabile {Xi → Yi}i∈I di morfismi in T tale che
la mappa Hom(C,Xi)→ Hom(C, Yi) è ingettiva per ogni i ∈ I e ogni
C ∈ F , la mappa indotta Hom(C,

⊕
i∈I Xi) −→ Hom(C,

⊕
i∈I Yi) è

ingettiva per ogni C ∈ F .

Infatti, considerando il d.t. X → Y → Z → TX ed applicando il funtore
coomologico Hom(C,−) si ottiene la successione esatta lunga

· · · → Hom(C, T−1Z)→ Hom(C,X)→ Hom(C, Y )→ Hom(C,Z)→ · · ·

che giustifica l’equivalenza

Hom(C,X)→ Hom(C, Y ) è la mappa nulla

⇐⇒ Hom(C, Y )→ Hom(C,Z) è ingettiva

⇐⇒ Hom(C, T−1Z)→ Hom(C,X) è surgettiva

La condizione (ii) è anche equivalente alla condizione seguente:
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(iii) Per ogni famiglia numerabile {Xi}i∈I di oggetti di T, per ogni C ∈ F
e per ogni morfismo f : C →

⊕
i∈I Xi, esiste una famiglia di morfismi

Ci → Xi t.c. f si decompone in C →
⊕

i∈I Ci →
⊕

i∈I Xi dove ogni
Ci è una somma diretta di oggetti in F .

Infatti, sia S la sottocategoria piena di T formata da somme dirette di
elementi di F . Se un morfismo X → Y in T soddisfa la condizione che
HomT(C,X)→ HomT(C, Y ) si annulla per ogni C ∈ F , allora lo stesso vale
per ogni C ∈ S. Da ciò segue l’implicazione (iii) ⇒ (ii). Per l’implicazione
opposta si veda [KS06] rmk. 10.5.4.
La condizione (iii) è una conseguenza della seguente

(iii)´ Per ogni famiglia numerabile {Xi}i∈I di oggetti di T, per ogni C ∈ F
e per ogni morfismo f : C →

⊕
i∈I Xi, esiste una famiglia di morfismi

Ci → Xi, con Ci ∈ F , t.c. f si scrive come C →
⊕

i∈I Ci →
⊕

i∈I Xi.

In definitiva, per un insieme F di oggetti di T, si ha

(ii) ⇐⇒ (ii)´ ⇐⇒ (ii)˝ ⇐⇒ (iii)⇐= (iii)´

Osservazione 2.7. Se F è un insieme di generatori perfetti allora lo è anche
{Tn(C)|n ∈ Z, C ∈ F}. Per cui una categoria triangolata con coprodotti
ha un insieme di generatori perfetti se e solo se ha un insieme di generatori
perfetti chiuso rispetto allo shift.

Definizione 2.8. Un oggetto K di T è detto compatto se

Hom
(
K,
⊕
i∈I

Xi

)
∼=
⊕
i∈I

Hom(K,Xi)

per ogni insieme {Xi}i∈I di oggetti di T.

Si osserva che lo shift di un oggetto compatto è ancora un oggetto compatto.
Osservazione 2.9. Come immediata conseguenza della Definizione 2.8 si de-
duce che ogni sottoinsieme di oggetti compatti di una categoria triangolata
soddisfa la seconda condizione della Definizione 2.5.

Lemma 2.10. Se K è un oggetto compatto di T e

X0 −→ X1 −→ X2 −→ X3 −→ · · ·

è una successione di morfismi di T, allora si ha che

Hom(K, holim−−−→Xi) ∼= lim−→Hom(K,Xi)

Dimostrazione. Consideriamo il triangolo distinto usato per definire holim−−−→Xi

e applichiamo il funtore Hom(K,−), ottenendo una successione esatta. Poi-
ché K è compatto e T commuta coi coprodotti, abbiamo un diagramma
commutativo dove le righe sono esatte e le mappe verticali sono isomorfismi
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Hom(K, holim−−−→Xi)

��

// Hom
(
K,

∞⊕
i=0

T (Xi)

)
//

��

Hom
(
K,

∞⊕
i=0

T (Xi)

)

��

Hom(K, holim−−−→Xi) //
∞⊕
i=0

Hom(K,T (Xi)) //
∞⊕
i=0

Hom(K,T (Xi))

Il secondo morfismo della riga inferiore è ovviamente iniettivo, sicché il
morfismo

Hom(K, holim−−−→Xi) −→ Hom
(
K,

∞⊕
i=0

T (Xi)

)
è il morfismo zero. Perciò, sfruttando sempre la compattezza di K, si ha che
le righe del seguente diagramma sono esatte e le colonne sono isomorfismi:

Hom
(
K,

∞⊕
i=0

Xi

)

��

// Hom
(
K,

∞⊕
i=0

Xi

)
//

��

Hom(K, holim−−−→Xi)

��

// 0

∞⊕
i=0

Hom(K,Xi) //
∞⊕
i=0

Hom(K,Xi) // Hom(K, holim−−−→Xi) // 0

e la riga inferiore identifica lim−→Hom(K,Xi) e Hom(K, holim−−−→Xi) attraverso
un isomorfismo naturale (cfr. [KS06] ex. 8.37).

Definizione 2.11. Sia T una categoria triangolata e sia F ′ ⊆ Ob(T) un
sottoinsieme non vuoto di oggetti di T . Si dice che F ′ è un insieme di
generatori compatti per T (o genera compattamente T) se soddisfa il punto
(i) della Definizione 2.5 e ogni oggetto K ∈ F ′ è compatto.

Se T ammette un insieme di generatori compatto, si dice che T è compat-
tamente generata. Dall’Osservazione 2.9 segue che un insieme di generatori
compatti è anche un insieme di generatori perfetti, dunque ogni categoria
triangolata compattamente generata è perfettamente generata e, pertanto,
ad essa si applica il teorema di rappresentabilità di Brown.

2.3 Il teorema di Brown
Prima di arrivare a dimostrare il teorema di rappresentabilità di Brown sono
necessari una serie di risultati ed osservazioni preliminari.
Iniziamo dalla seguente definizione, che introduce alcune tipologie di sotto-
categorie di una categoria abeliana.
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Definizione 2.12. Sia C una categoria abeliana e J una sua sottocategoria
piena. Indichiamo con J′ la sottocategoria piena di C tale che X ∈ J′ ⇔
∃ Y ∈ J t.c. X ∼= Y .

1. Si dice che J è chiusa rispetto ai kernel (risp. cokernel) se per ogni
morfismo f : X → Y in J, kerf (risp. cokerf) appartiene a J′.

2. Si dice che J è chiusa per estensioni in C se per ogni successione esatta
0→ X ′ → X → X ′′ → 0 in C t.c. X ′, X ′′ ∈ J, si ha che X ∈ J′.

3. Si dice che J è una sottocategoria pienamente abeliana di C se J è una
sottocategoria abeliana piena di C e il funtore di inclusione è esatto.

Sia S una categoria additiva localmente piccola che ammette somme dirette
piccole. Denotiamo con [Sop,Ab]add la categoria dei funtori additivi da Sop

ad Ab, che è una categoria abeliana (in generale non piccola) e può essere
vista come una sottocategoria piena di Ŝ (cfr. [KS06] prop. 8.2.12).
Un complesso F ′ → F → F ′′ in [Sop,Ab]add è esatto se e solo se F ′(X) →
F (X)→ F ′′(X) è esatto per ogni X ∈ S. Sia [Sop,Ab]prod la sottocategoria
piena di [Sop,Ab]add formata dai funtori additivi F che commutano con i
prodotti piccoli, cioè tali che F (⊕iXi) ∼=

∏
i F (Xi) per ogni insieme {Xi}i

di oggetti di S. Si ha allora il seguente

Lemma 2.13. La categoria [Sop,Ab]prod è una sottocategoria pienamente
abeliana di [Sop,Ab]add chiusa per estensioni.

Dimostrazione. È sufficiente mostrare che, prendendo un complesso esatto
F1 → F2 → F3 → F4 → F5 in [Sop,Ab]add, se Fj ∈ [Sop,Ab]prod per ogni
j ̸= 3, allora anche F3 appartiene a [Sop,Ab]prod (cfr. [KS06] rmk. 8.3.22).
Quest’ultima condizione segue dal lemma dei 5.

Supponiamo adesso che sussista la seguente condizione:

esiste una sottocategoria piccola piena S0 di S t.c. ogni
oggetto di S è una somma diretta piccola di oggetti di S0. (⋆)

Da ciò segue che un complesso F ′ → F → F ′′ in [Sop,Ab]prod è esatto se
e solo se F ′(X) → F (X) → F ′′(X) è esatto per ogni X ∈ S0. In parti-
colare il funtore di restrizione [Sop,Ab]prod → [Sop

0 ,Ab]add è esatto, fedele
e conservativo. Cioè, la categoria [Sop,Ab]prod è localmente piccola. Il
funtore

HomS(−,−) : S −→ [Sop,Ab]prod

X 7−→ HomS(−, X)

è ben definito perché HomS(−, X) commuta con i prodotti piccoli. Dato che
[Sop,Ab]prod → Ŝ è pienamente fedele, HomS(−,−) è un funtore additivo
pienamente fedele per il lemma di Yoneda.
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Lemma 2.14. Supponiamo che esista un S0 come sopra. Allora, per ogni
F ∈ [Sop,Ab]prod, ∃ X ∈ S e un epimorfismo HomS(−, X) ↠ F .

Dimostrazione. cfr. [KS06] lemma 10.5.6.

Lemma 2.15. Nelle ipotesi precedenti, si hanno le seguenti proprietà.

(i) Il funtore HomS(−,−) : S → [Sop,Ab]prod commuta con le somme
dirette piccole.

(ii) La categoria abeliana [Sop,Ab]prod ammette somme dirette piccole.

Dimostrazione. (i) Sia {Xi}i∈I un insieme di oggetti di S e sia F ∈ [Sop,Ab]prod.
La tesi segue dalla seguente catena di isomorfismi

[Sop,Ab]prod(Hom(−,
⊕

i∈I Xi), F ) ∼= F (
⊕

i∈I Xi)
∼=
∏

i∈I F (Xi)
∼=
∏

i∈I [Sop,Ab]prod(Hom(−, Xi), F )

(ii) Sia {Fi}i∈I un insieme di oggetti di [Sop,Ab]prod. Per il Lemma 2.14
esiste una successione esatta HomS(−, Xi) → HomS(−, Yi) → Fi → 0, con
Xi, Yi ∈ S. Poiché HomS(−,−) è pienamente fedele, esiste un morfismo
Xi → Yi che induce il morfismo HomS(−, Xi)→ HomS(−, Yi). Allora si ha

coker
(

HomS(−,
⊕

i∈I Xi)→ HomS(−,
⊕

i∈I Yi)
)
∼=

∼= coker
(⊕

i∈I HomS(−, Xi)→
⊕

i∈I HomS(−, Yi)
)

∼=
⊕

i∈I coker
(

HomS(−, Xi)→ HomS(−, Yi)
)

∼=
⊕

i∈I Fi

Facciamo adesso un passo indietro e consideriamo una categoria triangola-
ta T perfettamente generata. A meno di sostituire l’insieme di generato-
ri perfetti F con

∪
n∈Z T

nF possiamo supporre dal principio che esso sia
chiuso rispetto allo shift. Sia S la sottocategoria piena di T formata dalle
somme dirette piccole di oggetti di F . Allora S è una categoria additi-
va che ammette somme dirette piccole. Per di più, TS = S e T induce
un automorfismo T̃ : [Sop,Ab]prod → [Sop,Ab]prod mediante la posizione
(T̃F )(C) = F (T−1C) per F ∈ [Sop,Ab]prod e C ∈ S. Per costruzione, S
soddisfa la condizione (⋆) e quindi [Sop,Ab]prod è una categoria abeliana
localmente piccola e valgono i lemmi precedenti2. Si noti che un complesso
F ′ → F → F ′′ in [Sop,Ab]prod è esatto se e solo se F ′(C)→ F (C)→ F ′′(C)

2Questa è la ragione per cui abbiamo indicato con S sia la categoria presentata all’inizio
della sezione che quest’ultima appena costruita.
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è esatto per ogni C ∈ F .
Prolunghiamo il funtore HomS(−,−) definito in precedenza al funtore

HomT(−,−) : T −→ [Sop,Ab]prod

X 7−→ HomT(−, X)

Si ha che HomT(−,−) commuta con T. Si nota inoltre che, nonostante
HomS(−,−) sia pienamente fedele, in generale il funtore HomT(−,−) non è
fedele. Dalla definizione segue, però, che quest’ultimo è coomologico. Vale,
inoltre, il seguente

Lemma 2.16. Si ha che:

(i) se {Xi → Yi} è una famiglia numerabile di morfismi di T e HomT(−, Xi)→
HomT(−, Yi) è un epimorfismo per ogni i, allora HomT

(
−,
⊕

i∈I Xi

)
→

HomT
(
−,
⊕

i∈I Yi
)

è un epimorfismo.

(ii) il funtore HomT(−,−) : T → [Sop,Ab]prod commuta con le somme
dirette numerabili.

Dimostrazione. cfr. [KS06] lemma 10.5.8

Sia H : Top → Ab un funtore coomologico che commuta con i prodotti
piccoli. La restrizione di H a Sop definisce un H0 ∈ [Sop,Ab]prod.

Lemma 2.17. Sia H come sopra e sia K una sottocategoria triangolata
piena di T t.c. F ⊂ Ob(K) e K è chiusa rispetto alle somme dirette piccole.
Allora esiste un diagramma commutativo in T̂

Hom(−, X0)

--[[[[[[[[
[[[[[[[[

[[[[[[[[
[[[[[[[[

[[[[[[[[
[[[[[[[[

[[ // Hom(−, X1)

,,YYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YYYY
// · · · // Hom(−, Xn) //

&&LL
LLL

LLL
LLL

· · ·

H

t.c. Xn ∈ K e Im(HomT(−, Xn)→ HomT(−, Xn+1)) ∼= H0 in [Sop,Ab]prod.

Dimostrazione. Per il Lemma 2.14 possiamo prendere un X0 ∈ S e trovare
un epimorfismo HomS(−, X0) ↠ H0 in [Sop,Ab]prod. Costruiremo Xn ∈ K
in maniera induttiva. Ipotizziamo di aver costruito la successione fino ad
Xn e che Im(HomT(−, Xi) → HomT(−, Xi+1)) ∼= H0 per ogni 0 ≤ i < n.
Consideriamo una successione esatta

HomS(−, Zn)→ HomT(−, Xn)→ H0 → 0

con Zn ∈ S. Prendiamo un triangolo distinto

Zn → Xn → Xn+1 → TZn



2.3. Il teorema di Brown 19

Dato che Zn e Xn appartengono a K, anche Xn+1 appartiene a K. Inoltre
HomS(−, Zn) → HomT(−, Xn) → H è il morfismo zero e H è coomologi-
co, dunque HomT(−, Xn) → H si fattorizza attraverso HomT(−, Xn) →
HomT(−, Xn+1). Si ha quindi:

Im
(
HomT(−, Xn)→ HomT(−, Xn+1)

) ∼= Coim
(
HomT(−, Xn)→ HomT(−, Xn+1)

)
= Coker

(
HomT(−, Zn)→ HomT(−, Xn)

)
= Coim

(
HomT(−, Xn)→ H0

)
∼= Im

(
HomT(−, Xn)→ H0

)
= H0

Consideriamo il funtore N → T̂ costruito nel lemma precedente. Poiché
H commuta coi prodotti, i morfismi Hom(−, Xn) −→ H danno luogo al
morfismo Hom

(
−,
⊕

n≥0Xn

)
−→ H. Per di più, come conseguenza della

commutatività del diagramma, si ha che

Hom
(
−,
⊕
n≥0

Xn

)
1−shift−−−−−→ Hom

(
−,
⊕
n≥0

Xn

)
−→ H

è il morfismo nullo.

Lemma 2.18. La successione

0→ HomT

(
−,
⊕
n≥0

Xn

)
1−shift−−−−−→ HomT

(
−,
⊕
n≥0

Xn

)
−→ H0 → 0

è esatta in [Sop,Ab]prod.

Dimostrazione. cfr. [KS06] lemma 10.5.11

Lemma 2.19. Esiste un oggetto Z ∈ K e un morfismo HomT(−, Z) → H
che induce un isomorfismo HomT(C,Z) ∼= H(C) per ogni C ∈ F .

Dimostrazione. Sia Z = holim−−−→Xi e X =
⊕

n≥0Xn. Poiché H è coomo-
logico, Hom(−, X) → H fattorizza attraverso Z. Per la coomologicità di
HomT(−,−), si ha la successione esatta in [Sop,Ab]prod

hX
1−shift // hX // hZ // hTX

1−shift //

∼=
��

hTX

∼=
��

T (hX) // T (hX)

Applicando il Lemma 2.18, si verifica che gli ultimi morfismi a destra sono
monomorfismi. Per cui, dopo calcoli analoghi a quelli fatti nel Lemma 2.18,
si trova HomT(−, Z) ∼= Coker

(
HomT(−, X)

1−shift−−−−−→ HomT(−, X)
) ∼= H0
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Lemma 2.20. Il funtore naturale K → T dà luogo ad una equivalenza di
categorie.

Dimostrazione. Bisogna dimostrare che è un funtore pienamente fedele ed
essenzialmente surgettivo. La prima parte è vera per ipotesi. Resta da
provare che è essenzialmente surgettivo. Per fare ciò prendiamo X ∈ T
ed applichiamo il Lemma 2.19 al funtore HomT(−, X), ottenendo Z ∈ K
ed un morfismo HomT(−, Z) → HomT(−, X) che induce un isomorfismo
HomT(C,Z)

∼=−→ HomT(C,X) per ogni C ∈ F . Si conclude usando la
definizione di F e l’embedding di Yoneda.

Possiamo finalmente enunciare e dimostrare il teorema di rappresentabilità
di Brown.

Teorema 2.21. Sia T una categoria triangolata perfettamente generata.
Sia H : Top → Ab un funtore coomologico per cui valga l’isomorfismo

H

(⊕
i∈I

Xi

)
∼=
∏
i∈I

H(Xi)

per ogni insieme {Xi}i∈I di oggetti di T. Allora H è rappresentabile.

Dimostrazione. Sia Z come nel Lemma 2.19 e dimostriamo che il morfismo
HomT(−, Z) → H è un isomorfismo. Per arrivare a questo risultato de-
finiamo K, sottocategoria piena di T formata dagli oggetti Y per i quali
Hom(TnY, Z) → H(TnY ) è un isomorfismo per ogni n ∈ Z. Allora K con-
tiene F , è chiusa rispetto alla formazione di somme dirette piccole ed è una
sottocategoria triangolata di T. Quindi K = T per il Lemma 2.20.

Corollario 2.22. Sia T una categoria triangolata perfettamente generata.
Si ha che:

1. T ammette prodotti piccoli.

2. Sia F : T → T′ un funtore triangolato che commuta con le somme
dirette piccole. Allora F ha un aggiunto destro G.

Dimostrazione. 1. Dato un insieme {Xi}i∈I di oggetti di T, il funtore

Z 7→
∏
i∈I

HomT(Z,Xi)

è coomologico e commuta con i prodotti piccoli. Dunque è rappresen-
tabile.

2. Per ogni Y ∈ T′, il funtore X 7→ HomT′(F (X), Y ) è rappresentabile
per il Teorema 2.21. Quindi F ha un aggiunto destro.

Non è difficile vedere che G è a sua volta un funtore triangolato.



Capitolo 3

Un’applicazione alla teoria
dell’omotopia

In quest’ultima parte presentiamo, senza dimostrarla, la “versione origina-
le” del teorema di rappresentabilità di Brown e la utilizziamo per una di-
mostrazione non costruttiva dell’esistenza degli spazi di Eilenberg-MacLane.
In tutto il capitolo le funzioni, salvo avviso contrario, saranno considerate
(almeno) continue.

3.1 Il teorema di Brown “classico”
Iniziamo con qualche richiamo di topologia algebrica1. Per una trattazione
più approfondita si rimanda ad un qualunque testo introduttivo di topologia
algebrica, come ad esempio [JPM99] o [Rot88].

Definizione 3.1. Un CW complesso è uno spazio X ottenuto come unione
di una sequenza di sottospazi Xn in modo tale che, induttivamente, X0 è
un insieme discreto di punti e Xn+1 è il pushout ottenuto da Xn attaccando
dischi (aperti) Dn+1 mediante “mappe di attaccamento” j : Sn → Xn.

Sn j //

��

Xn

��
Dn+1 // Xn+1

_�

Cioè, se chiamiamo Jn+1 l’insieme di tali mappe j, si ha che Xn+1 è lo spazio
quoziente ottenuto da Xn ∪ (Jn+1 ×Dn+1) identificando (j, x) con j(x) per
ogni x ∈ Sn. Ogni mappa (o, più spesso, il suo dominio) Dn+1 → X è
chiamata (n+ 1)-cella. Il sottospazio Xn è chiamato l’n-scheletro di X.

1Per evitare patologie supponiamo di lavorare con categorie di spazi sufficientemente re-
golari, ad esempio compattamente generati e connessi per archi, sebbene molte costruzioni
e proprietà seguenti valgano più in generale.

21
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Esempio 3.2. Ogni grafo è un CW complesso 1-dimensionale2.
Esempio 3.3. La n-sfera ammette struttura di CW complesso con due celle,
una 0-cella e una n-cella, ottenuta attaccando la n-cella alla 0-cella attra-
verso la mappa costante di dominio Sn−1. Alternativamente, identificando
Sn−1 con un equatore di Sn, notiamo che Sn−1 ha come complementare
due dischi, cioè gli emisferi. Induttivamente, si può perciò dare a Sn una
decomposizione con due celle in ogni dimensione k tale che 0 ≤ k ≤ n.
Esempio 3.4. Poiché lo spazio proiettivo reale è il quoziente di Sn ottenuto
identificando i punti antipodali, si deduce che Pn(R) è un CW complesso
con una cella in ogni dimensione.

Definizione 3.5. Dati X,Y due CW complessi, una f : X → Y continua
si dice cellulare se f(Xn) ⊆ Y n per ogni n.

Si possono, inoltre, definire i sottocomplessi A di un CW complesso X in
maniera tale che siano dei sottospazi di X e che abbiano una struttura di
CW complesso che rende la composizione Dn → A ↪→ X una cella di X. A
partire da un sottocomplesso A ⊆ X si definisce il CW complesso relativo o
CW-coppia (X,A) considerando su di essa la struttura di CW complesso.

Definizione 3.6. Sia ∆n = {(t0, · · · , tn) ∈ Rn+1|
∑n

i=0 ti = 1, ti ≥ 0 ∀i}
l’n-simplesso standard e sia X uno spazio topologico. Un n-simplesso sin-
golare σn è un’applicazione continua σn : ∆n → X.

Dato che ∆1 è un intervallo chiuso, un 1-simplesso singolare è essenzialmente
un arco in X; dato che ∆0 è un insieme con un solo elemento, un 0-simplesso
singolare può essere identificato con un punto in X.

Definizione 3.7. Sia X uno spazio topologico. Per ogni n ≥ 0, definiamo
il gruppo abeliano libero Cn(X) che ha per base gli n-simplessi singolari in
X. Gli elementi di Cn(X) sono chiamate n-catene singolari in X.

Si costruiscono opportuni operatori di bordo ∂n : Cn(X) → Cn−1(X) tali
che ∂n ◦ ∂n+1 = 0 che rendono (C•(X), ∂) un complesso di catene, detto
complesso singolare di X. L’omologia di questo complesso è detta omologia
singolare di X. Osservando che per ogni f : X → Y continua, la mappa
indotta f∗ : Cn(X) → Cn(Y ) manda cicli in cicli e bordi in bordi e fa
commutare il diagramma

Cn(X)
∂n //

f∗
��

Cn−1(X)

f∗
��

Cn(Y )
∂n // Cn−1(Y )

2La dimensione di un CW complesso è definita come il massimo delle dimensioni delle
sue celle.
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si deduce che per ogni n ≥ 0, Hn : Top→ Ab è un funtore covariante.
Nella definizione del complesso singolare abbiamo tacitamente imposto che
Cn(X) = 0 ∀n < 0. C’è, però, un altro modo interessante di completare il
complesso singolare per i valori negativi di n.

Definizione 3.8. Sia (C•(X), ∂) il complesso singolare dello spazio X. Po-
niamo C̃−1(X) = Z e C̃n(X) = 0 ∀n < −1 ottenendo il complesso

· · · −→ C1(X)
∂1−−→ C0(X)

∂̃0−−→ Z 0−−→ 0 −→ 0 −→ · · ·

dove ∂̃0(
∑

σmσσ) =
∑

σmσ, chiamato complesso singolare aumentato di X.

Dai conti si vede che ∂̃0 ◦ ∂1 = 0, sicché il complesso singolare aumentato è
effettivamente un complesso. La sua omologia è detta omologia ridotta.
È interessante notare che, per ogni n > 0, si ha che Hn(X) = H̃n(X), mentre
H0(X) = H̃0(X) ⊕ Z. Questa definizione porta a notevoli semplificazioni
concettuali, ad esempio rende nulli tutti i gruppi di omologia di un punto.
Dato un gruppo abeliano3 G, possiamo applicare il funtore Hom(−, G) ad
ogni Cn(X) e ogni ∂n ottenendo il complesso di cocatene

· · · −→ C∗
n−1(X)

dn−1−−−→ C∗
n(X)

dn−−→ C∗
n+1(X) −→ · · ·

dove i C∗
i (X) sono i gruppi duali dei Ci(X) e le mappe sono quelle indotte.

Definizione 3.9. Per ogni intero n, si definisce l’n-esimo gruppo di coomo-
logia singolare diX come il gruppo quozienteHn(X,G) = ker(dn)/im(dn−1).

In maniera analoga a quanto fatto sopra, si dimostra che questi gruppi de-
finiscono dei funtori controvarianti Hn(−, G) : Top → Ab. Si introduce
similmente la nozione di coomologia ridotta.

Proposizione 3.10. Sia n > 0 e sia Sn la n-sfera, allora

H̃k(S
n) =

{
Z se k = n

0 se k ̸= n

Dimostrazione. cfr. teorema 6.5 in [Rot88]

Osservazione 3.11. Usando questo risultato si arriva a dimostrare che, dato
un gruppo abeliano G, risulta

H̃k(Sn, G) =

{
G se k = n

0 se k ̸= n

3In realtà tale procedura si può ripetere con un più generico modulo su PID.
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Proseguiamo con altre costruzioni basilari.
Nel seguito, (X,x0) è uno spazio topologico puntato e I = [0, 1] è l’intervallo
unitario.

Definizione 3.12. La sospensione ridotta ΣX di X è lo spazio quoziente

ΣX = (X × I)/(X × ∂I ∪ {x0} × I)

Definizione 3.13. Lo spazio dei loop ΩX è lo spazio delle funzioni continue
(con la topologia compatta-aperta) da S1 a X che preservano il punto base

ΩX = C(S1, X)∗ = {f ∈ C(I,X)|f(0) = f(1) = x0}

Definizione 3.14. Se (Y, y0) è un altro spazio puntato, si definisce il pro-
dotto smash

X ∧ Y = (X × Y )/(X ∨ Y )

in cui abbiamo identificato X e Y con le loro copie omeomorfe X × {y0} e
{x0}×Y che sono sottospazi del prodotto tali che la loro unione è omeomorfa
al wedge X ∨ Y .

Definizione 3.15. Il cilindro (o mapping cylinder) di f : X → Y è lo spazio

Mf = ((X × I) ⊔ Y )/ ∼

dove ∼ è la relazione d’equivalenza generata da (x, 0) ∼ f(x) ∀x ∈ X.

La seguente proposizione mette in luce una stretta parentela fra sospensione
ridotta e prodotto smash.

Proposizione 3.16. Si hanno i seguenti omeomorfismi:

• ΣX ∼= X ∧ S1

• Sm ∧ Sn ∼= Sm+n

Dimostrazione. Per la prima parte, ricordando che S1 ∼= I/∂I, possiamo
scrivere X ∧ S1 = (X × S1)/(X ∨ S1) ∼= (X × I)/(X × ∂I ∪ X ∨ S1) ∼=
(X × I)/(X × ∂I ∪ {x0} × I) = ΣX.
Per la seconda parte, costruendo Sn come un CW complesso formato da una
0-cella e una n-cella, è immediato vedere che Sm ∧ Sn (come quoziente del
prodotto) ha soltanto una 0-cella e una (m+n)-cella, e dunque è omeomorfo
a Sm+n.

Osservazione 3.17. Possiamo vedere il prodotto smash come il pushout

X ∨ Y //

��

X × Y

��
S0 // X ∧ Y

_�
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in cui S0 è la 0-sfera formata dai punti base di X e Y . In virtù della
proposizione precedente anche la sospensione ridotta è un pushout, essendo
sostanzialmente un particolare prodotto smash.

Osservazione 3.18. Se f : X → Y è un morfismo di Top∗ (la categoria
degli spazi topologici puntati) si vede che f × idI è compatibile rispetto alla
sospensione ridotta e induce una Σf : ΣX → ΣY t.c. [(x, t)] 7→ [(f(x), t)] e
si può altresì definire Ωf : ΩX → ΩY con l’assegnazione γ 7→ f ◦ γ. Da ciò
− dopo ulteriori verifiche − si deduce che Σ e Ω sono funtori Top∗ → Top∗.

Perdipiù Σ e Ω rispettano le equivalenze omotopiche e quindi passano al
quoziente, definendo di fatto dei funtori hTop∗ → hTop∗. Inoltre, per
ogni X,Y ∈ hTop∗ si ha4 che [ΣX,Y ]∗ e [X,ΩY ]∗ sono gruppi. Il risultato
seguente consente di dire qualcosa in più.

Proposizione 3.19. Σ e Ω sono una coppia di funtori aggiunti.

Dimostrazione. Basta vedere che una f : ΣX → Y corrisponde ad una
g : X → ΩY se f(x, s) = g(x)(s). Questa corrispondenza si verifica essere
un isomorfismo di gruppi [ΣX,Y ]∗ ∼= [X,ΩY ]∗, i.e. Σ ⊣ Ω.

Definizione 3.20. Per ogni intero n > 0, l’insieme delle classi di omotopia
di funzioni puntate πn(X,x0) := [Sn, X]∗ forma un gruppo, detto n-esimo
gruppo di omotopia di X.

Per n = 0, π0(X,x0) è l’insieme delle componenti connesse per archi di X,
che − salvo casi particolari − non ha la struttura di gruppo. Si dimostra
(e.g. usando l’argomento di Eckmann–Hilton) che i gruppi di omotopia sono
abeliani per ogni n > 1. Avendo convenuto di usare spazi connessi per archi,
possiamo scrivere πn(X) al posto di πn(X,x0) dato che, in questo caso, i
gruppi di omotopia sono invarianti rispetto alla scelta del punto base.

Osservazione 3.21. Usando le proprietà precedenti otteniamo la catena di
omeomorfismi

πn(X) = [Sn, X]∗ ∼= [Sn−1 ∧ S1, X]∗ ∼= [ΣSn−1, X]∗ ∼= [Sn−1,ΩX]∗ ∼= · · · ∼=

∼= [S0,ΩnX]∗ = π0(Ω
nX)

che permette di apprezzare l’importanza degli spazi di loop iterati in teoria
dell’omotopia.

Definizione 3.22. Una f : X → Y fra due spazi topologici puntati X e Y
si dice equivalenza debole se la mappa indotta f∗ : πn(X,x0)→ πn(Y, f(x0))
è un isomorfismo per ogni n.

4La notazione qui in uso, di uso comune in letteratura, è [−,−] := HomhTop(−,−)
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In particolare, nel caso in cui n = 0 si ha che f∗ è semplicemente una bigezio-
ne fra gli insiemi delle componenti connesse per archi di X e Y , condizione
automaticamente vera nel caso in cui X e Y siano connessi per archi. Inol-
tre si verifica facilmente che ogni equivalenza omotopica è un’equivalenza
debole, ma il contrario non è sempre vero (lo è però per spazi che hanno lo
stesso tipo d’omotopia di un CW complesso).

Concludiamo questa sezione con la formulazione classica del teorema di rap-
presentabilità di Brown. Questo importante risultato, che potrebbe sem-
brare assai distante dalla sua generalizzazione nell’ambito delle categorie
triangolate, è in realtà molto più vicino di quanto non sembri: nonostante
la tesi del teorema sia di natura topologica − un funtore controvariante dal-
la categoria dell’omotopia dei CW complessi puntati connessi hCW∗ che
soddisfa due assiomi, uno sui coprodotti e uno di tipo Mayer-Vietoris, è
rappresentabile −, la sua dimostrazione usa delle tecniche che di topologico
hanno ben poco ma sono, invece, squisitamente categoriali e invero molto
simili a quelle usate nella dimostrazione proposta nel capitolo precedente.

Teorema 3.23. (Brown ’62) Sia F : hCW∗ → Set∗ un funtore controva-
riante tale che

1. F
(∨

iXi

) ∼= ∏i F (Xi) cioè manda coprodotti (somme wedge) in pro-
dotti

2. se X è un CW complesso puntato e X1, X2 sono sottocomplessi puntati
di X tali che X = X1 ∪X2 e X1 ∩X2 = A, allora la mappa canonica

F (X)→ F (X1)×F (A) F (X2)

è surgettiva

allora F è rappresentabile.

Osservazione 3.24. La seconda condizione del Teorema 3.23 può essere espres-
sa, più in generale (ossia nel caso della categoria dell’omotopia degli spazi
topologici puntati connessi), richiedendo che F mandi pushout omotopici in
pullback deboli. Queste sono versioni “più deboli” delle analoghe costruzio-
ni universali che si incontrano nell’ordinaria teoria delle categorie su cui si
potrebbe discutere a lungo5. Tuttavia, in questa trattazione ci limitiamo
alla formulazione del teorema per come è stata presentata: infatti si può
vedere che in hCW∗ le due versioni sono equivalenti.

È importante notare che, per ogni n, il funtore di coomologia ridotta H̃n(−, G)
possiede molte buone proprietà, tra le quali quella di essere invariante per

5Il concetto di pushout omotopico, caso particolare di colimite omotopico, viene
formalizzato nel contesto delle categorie modello.
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omotopia − che permette di poterlo definire su hTop e di poterlo restringe-
re a hCW∗ − e in più, per alcuni classici risultati, tale funtore soddisfa le
ipotesi del Teorema 3.23 ed è perciò rappresentabile. Nel paragrafo seguente
vedremo da quale spazio è rappresentato.

3.2 Spazi di Eilenberg-MacLane
Per quanto detto finora possiamo assumere che il funtore di coomologia
ridotta X → H̃n(X,G) sia rappresentabile nella categoria dell’omotopia
dei CW complessi puntati (connessi). Questo significa che esiste un CW
complesso Q tale che si abbia l’isomorfismo naturale

H̃n(X,G) ∼= [X,Q]∗

Prendendo X = Q l’isomorfismo diventa H̃n(Q,G) ∼= [Q,Q]∗ e quindi, per il
lemma di Yoneda, c’è una classe universale da cui tutte le altre classi di coo-
mologia sono ottenute per pullback, in maniera unica a meno di omotopia.
Cioè l’isomorfismo naturale tra i due funtori è determinato dall’assegnazione
α 7→ α∗(ιn) dove α è un elemento di [X,Q]∗ e ιn è la classe di coomologia
che corrisponde a id ∈ [Q,Q]∗.
Vediamo adesso come sono fatti i gruppi di omotopia di Q. Ricordando
che questi sono le classi di omotopia delle mappe Sk → Q e applicando il
risultato trovato nell’Osservazione 3.11 abbiamo che

πk(Q) = [Sk, Q]∗ ∼= H̃n(Sk, G) =

{
G se k = n

0 se k ̸= n

Ciò che abbiamo appena provato ci motiva a dare la seguente

Definizione 3.25. Sia G un gruppo e n un intero positivo. Uno spazio di
Eilenberg-MacLane di tipo K(G,n) è un CW complesso K(G,n) tale per cui

πi(K(G,n)) =

{
G se i = n

0 se i ̸= n

Osserviamo che se n ≥ 2, per far sì che K(G,n) esista è necessario che G
sia abeliano, il che è ovvia conseguenza della commutatività dei gruppi di
omotopia superiori.

Siamo dunque giunti a dimostrare il

Teorema 3.26. Dato un CW complesso X e un gruppo abeliano G, si ha
che per ogni intero n ≥ 0 esiste un isomorfismo naturale

H̃n(X,G) ∼= [X,K(G,n)]∗
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In questa maniera si dimostra, in astratto, l’esistenza degli spazi di Eilenberg-
MacLane. Utilizzando ulteriori strumenti è possibile dimostrare che gli spazi
di Eilenberg-MacLane sono unici a meno di equivalenza debole, ovvero sono
identificati univocamente − sebbene in senso debole − dalla coppia (G,n).

Esempio 3.27. S1 è un esempio di K(Z, 1). Infatti è ben noto che π1(S1) ∼= Z
e πn(S1) = 0 ∀n ≥ 2, dato che il suo rivestimento universale R è contrattile.

Gli spazi di Eilenberg-MacLane sono di fondamentale importanza in teoria
dell’omotopia: ad esempio sono usati per costruire le torri di Postnikov,
un importante strumento che permette di ricostruire uno spazio topologico
a partire dai suoi gruppi di omotopia. Sono anche usati per classificare le
operazioni coomologiche.

Definizione 3.28. Una operazione coomologica η di tipo (m,n,G,G′) è
una trasformazione naturale η : H̃m(−, G)→ H̃n(−, G′) tra funtori definiti
su CW complessi.

Per Yoneda, si ha allora che le operazioni coomologiche corrispondono biu-
nivocamente alle classi di omotopia di mappe fra gli spazi di Eilenberg-
MacLane che rappresentano i funtori, i.e.

Nat(H̃m(−, G), H̃n(−, G′)) ∼= Nat([−,K(G,m)]∗, [−,K(G′, n)]∗)
∼= [K(G,m),K(G′, n)]∗
∼= H̃n(K(G,m), G′)

3.3 Osservazioni finali
Ci sono un gran numero di modi possibili di definire l’omologia e, di conse-
guenza, la coomologia per gli spazi topologici. In questa trattazione abbiamo
visto il caso della coomologia singolare e ridotta, ma se ne potrebbero in-
trodurre molte altre, in base anche al tipo di spazio considerato. Alcune
possono essere usate per calcolare più agevolmente la coomologia singolare
per particolari tipi di spazi topologici: ad esempio la coomologia cellulare
per i CW complessi oppure la coomologia di de Rham per le varietà diffe-
renziabili. Queste teorie potrebbero fornire risultati diversi per alcuni tipi
di spazi, ma ce ne sono molti in cui sono tutte concordi.
Queste osservazioni hanno storicamente portato alla formulazione di una li-
sta di assiomi, noti come assiomi di Eilenberg-Steenrod, dimodoché le costru-
zioni che condividono queste proprietà concordino almeno sui CW complessi.
Questi assiomi permettono di definire le teorie omologiche generalizzate e le
teorie coomologiche generalizzate. Per semplicità ci focalizziamo sulla defi-
nizione di tali teorie coomologiche generalizzate nel caso della coomologia
ridotta per CW complessi.
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Definizione 3.29. Una teoria coomologica ridotta h̃• sui CW complessi
puntati consiste di una successione di funtori h̃n : hCW∗ → Ab che soddisfa
i seguenti assiomi:

• ESATTEZZA Se A è un sottocomplesso di X, allora la successione

h̃n(X\A) −→ h̃n(X) −→ h̃n(A)

è esatta.

• SOSPENSIONE Per ogni n esiste un isomorfismo naturale

Σ : h̃n(X) ∼= h̃n+1(ΣX)

• ADDITIVITÀ Se X è il wedge di un insieme di CW complessi puntati
Xi, allora l’inclusione Xi ↪→ X induce un isomorfismo

h̃•(X)
∼=−−→
∏
i

h̃•(Xi)

Ogni teoria coomologica così costruita determina una famiglia di spazi topo-
logici con una speciale struttura che li collega, che costituisce un cosidetto
spettro6.

Definizione 3.30. Uno spettro è una successione di spazi puntati Xi, i ∈ N,
e mappe puntate ΣXi → Xi+1.

Possiamo definire per esempio lo spettro di Eilenberg-MacLane {K(G,n)}n
costruito a partire dagli spazi di Eilenberg-MacLane.
Dall’aggiunzione Σ ⊣ Ω sorge la seguente definizione:

Definizione 3.31. Un Ω-spettro è una successione di spazi puntati Xi ed
equivalenze deboli Xi → ΩXi+1.

Di solito si richiede che gli Xi abbiano il tipo di omotopia di un CW com-
plesso, nel qual caso sappiamo che la nozione di equivalenza debole ed
equivalenza omotopica coincidono. Inoltre, in questo caso, vale il risultato
seguente.

Teorema 3.32. Sia {Xi}i un Ω-spettro. Definiamo

h̃n(Y ) =

{
[Y,Xk]∗ se k ≥ 0

[Y,Ω−kX0]∗ se k < 0

Allora i funtori h̃n definiscono una teoria coomologica ridotta sui CW com-
plessi puntati.

6Qui ci riferiamo a quello che May chiama prespettro in [JPM99]
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Dimostrazione. Si veda il Teorema a pag.178 di [JPM99].

Pertanto, il teorema di Brown assume una forma più generale.

Teorema 3.33. Ogni teoria coomologica ridotta sulla categoria dei CW
complessi puntati e mappe che preservano il punto base è della forma

h̃n(X) = [X,Kn]∗

per qualche Ω-spettro {Kn}.

Anche in questo caso si vede che i Kn sono unici a meno di equivalenza
omotopica.

Questa riformulazione ha il doppio vantaggio di generalizzare i risultati visti
nei paragrafi precedenti, primo fra tutti l’esistenza degli spazi di Eilenberg-
MacLane, e di offrire un ponte fra le due versioni del teorema di rappresenta-
bilità di Brown viste nel corso di questa tesi. Infatti, sebbene ci siano diverse
categorie di spettri, tutte loro determinano la stessa categoria dell’omotopia,
nota col nome di categoria dell’omotopia stabile e quest’ultima si può dotare
della struttura di categoria triangolata.
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