

# On the embeddings of quasi-categories into prederivators

Nicola Di Vittorio  
July 04, 2019



UNIVERSITÀ  
DEGLI STUDI  
DI PADOVA

## Why higher categories?

- homotopy coherent structures arising in (stable) homotopy theory, (derived) algebraic geometry and so on,
- natural evolution of category theory.

## Overview

## Why higher categories?

- homotopy coherent structures arising in (stable) homotopy theory, (derived) algebraic geometry and so on,
- natural evolution of category theory.

## An important problem

Technical difficulties involved in the definition and application of higher categories lead to a proliferation of models of these structures.

### Theorem (Toën, 2005)

All models of  $(\infty, 1)$ -categories define fibrant objects of Quillen equivalent model categories.

## The general motivation

Introduce a theoretical framework in which one can study all these models at once, i.e. work “model independently”.

## State of the art of Synthetic Higher Category Theory

- Model-independent Higher Category Theory via  $\infty$ -cosmoi (Dominic Verity and Emily Riehl)
- HoTT as an internal logic for  $\infty$ -topoi (Shulman, Kapulkin, Lumsdaine, Riehl etc.)

## The purpose of the thesis

Give a concrete example of the first philosophy, by analysing the interactions between two of these models.

# Simplicial sets

Let  $\Delta$  be the category of finite ( $\neq \emptyset$ ) ordinals  $[n] = (0 < \dots < n)$  and order preserving maps (*simplex category*).

## Lemma

All the morphisms in  $\Delta$  can be *uniquely* written as compositions of *cofaces* and *codegeneracies*, which are defined as follows.

$$d^k: [n-1] \rightarrow [n]$$

$$j \mapsto \begin{cases} j, & j < k \\ j+1, & j \geq k \end{cases}$$

$$s^k: [n+1] \rightarrow [n]$$

$$j \mapsto \begin{cases} j, & j \leq k \\ j-1, & j > k \end{cases}$$

# Simplicial sets

Let  $\Delta$  be the category of finite ( $\neq \emptyset$ ) ordinals  $[n] = (0 < \dots < n)$  and order preserving maps (*simplex category*).

## Lemma

All the morphisms in  $\Delta$  can be *uniquely* written as compositions of *cofaces* and *codegeneracies*, which are defined as follows.

$$d^k: [n-1] \rightarrow [n]$$

$$j \mapsto \begin{cases} j, & j < k \\ j+1, & j \geq k \end{cases}$$

$$s^k: [n+1] \rightarrow [n]$$

$$j \mapsto \begin{cases} j, & j \leq k \\ j-1, & j > k \end{cases}$$

## Definition

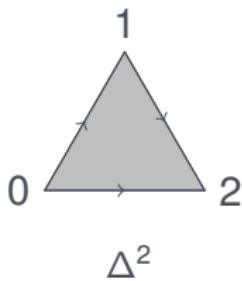
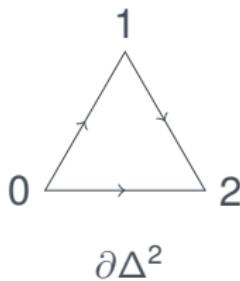
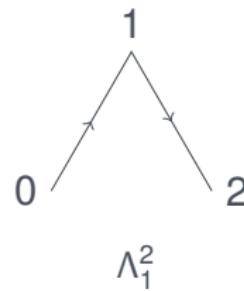
A *simplicial set* is a functor  $\Delta^{\text{op}} \rightarrow \mathbf{Set}$ .

The presheaf category  $\mathbf{Set}^{\Delta^{\text{op}}}$  is denoted by  $\mathbf{sSet}$ . Furthermore  $d_k := X(d^k)$ ,  $s_k := X(s^k)$ ,  $X_n := X([n])$  are called resp. *faces*, *degeneracies* and *the set of n-simplices*, for every  $X \in \mathbf{sSet}$ .

## Main examples

- 1 the standard  $n$ -simplex  $\Delta^n := \Delta(-, [n])$ ,
- 2 its boundary  $\partial\Delta^n$ ,
- 3 the  $k^{\text{th}}$  horn  $\Lambda_k^n$ , for  $0 \leq k \leq n$ .

For instance, if  $n = 2$  we have (amongst others) these ones.



# Kan complexes

## Definition

A simplicial set  $X$  is a *Kan complex* if every horn  $\Lambda_k^n \rightarrow X$ , for  $0 \leq k \leq n$ , has a filler  $\Delta^n \rightarrow X$ , i.e.

$$\begin{array}{ccc} \Lambda_k^n & \xrightarrow{\forall} & X \\ \downarrow & \nearrow \exists & \\ \Delta^n & & \end{array}$$

commutes.

# Kan complexes

## Definition

A simplicial set  $X$  is a *Kan complex* if every horn  $\Lambda_k^n \rightarrow X$ , for  $0 \leq k \leq n$ , has a filler  $\Delta^n \rightarrow X$ , i.e.

$$\begin{array}{ccc}
 \Lambda_k^n & \xrightarrow{\forall} & X \\
 \downarrow & \nearrow \exists & \\
 \Delta^n & & 
 \end{array}$$

commutes.

## Example: the singular complex of a space

$\text{Sing}(X): \Delta^{\text{op}} \rightarrow \mathbf{Set}$ ,  $[n] \mapsto \mathbf{Top}(|\Delta^n|, X)$  is a Kan complex.

# The nerve of a category

## Definition

The nerve is defined as  $N: \mathbf{Cat} \rightarrow \mathbf{sSet}$ ,  $\mathbf{C} \mapsto \mathbf{Cat}(-, \mathbf{C})$ .

I.e.  $n$ -simplices of  $N\mathbf{C}$  are strings of composable morphisms

$$C_0 \xrightarrow{f_1} C_1 \xrightarrow{f_2} C_2 \rightarrow \cdots \xrightarrow{f_n} C_n,$$

faces compose morphisms and degeneracies add identities.

# The nerve of a category

## Definition

The nerve is defined as  $N: \mathbf{Cat} \rightarrow \mathbf{sSet}$ ,  $\mathbf{C} \mapsto \mathbf{Cat}(-, \mathbf{C})$ .

I.e.  $n$ -simplices of  $\mathbf{NC}$  are strings of composable morphisms

$$C_0 \xrightarrow{f_1} C_1 \xrightarrow{f_2} C_2 \rightarrow \cdots \xrightarrow{f_n} C_n,$$

faces compose morphisms and degeneracies add identities.

## Example

The nerve of a groupoid is a Kan complex (with unique fillers).

# The nerve of a category

## Definition

The nerve is defined as  $N: \mathbf{Cat} \rightarrow \mathbf{sSet}$ ,  $\mathbf{C} \mapsto \mathbf{Cat}(-, \mathbf{C})$ .

I.e.  $n$ -simplices of  $N\mathbf{C}$  are strings of composable morphisms

$$C_0 \xrightarrow{f_1} C_1 \xrightarrow{f_2} C_2 \rightarrow \cdots \xrightarrow{f_n} C_n,$$

faces compose morphisms and degeneracies add identities.

## Example

The nerve of a groupoid is a Kan complex (with unique fillers).

## Proposition

The nerve functor is fully faithful.

# Quasi-categories

## Definition

A simplicial set  $X$  is a *quasi-category* if every inner (i.e. for  $0 < k < n$ ) horn  $\Lambda_k^n \rightarrow X$  has a filler  $\Delta^n \rightarrow X$ .

# Quasi-categories

## Definition

A simplicial set  $X$  is a *quasi-category* if every inner (i.e. for  $0 < k < n$ ) horn  $\Lambda_k^n \rightarrow X$  has a filler  $\Delta^n \rightarrow X$ .

## Examples

- every Kan complex is a quasi-category,
- the nerve of a category is a quasi-category (with unique fillers).

## Remark

Quasi-categories generalize both Kan complexes and categories, connecting homotopy theory and category theory.

We denote by **qCat** the full subcategory of **sSet** spanned by quasi-categories.

## Proposition

If  $X$  is a simplicial set and  $Y$  is a quasi-category, then  $Y^X$  is a quasi-category.

## Definition

**qCat<sub>•</sub>** is the simplicially enriched category such that, for every pair of quasi-categories  $X, Y$ , the simplicial set of morphisms is

$$\mathbf{qCat}_{\bullet}(X, Y) : \Delta^{\text{op}} \rightarrow \mathbf{Set}$$

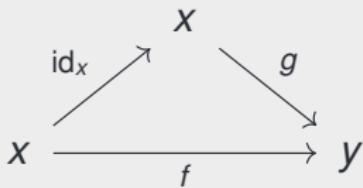
$$[n] \mapsto \mathbf{qCat}(X, Y^{\Delta^n})$$

$$([m] \rightarrow [n]) \mapsto \mathbf{qCat}(X, Y^{\Delta^n}) \rightarrow \mathbf{qCat}(X, Y^{\Delta^m})$$

# Homotopies inside a quasi-category

## Definition

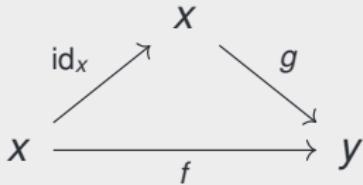
Two 1-simplices  $f, g: x \rightarrow y$  in a quasi-category  $X$  are said to be *homotopic* if there exists a 2-simplex  $\sigma: \Delta^2 \rightarrow X$  such that  $d_2(\sigma) = \text{id}_x$ ,  $d_0(\sigma) = g$  and  $d_1(\sigma) = f$ .



# Homotopies inside a quasi-category

## Definition

Two 1-simplices  $f, g: x \rightarrow y$  in a quasi-category  $X$  are said to be *homotopic* if there exists a 2-simplex  $\sigma: \Delta^2 \rightarrow X$  such that  $d_2(\sigma) = \text{id}_x$ ,  $d_0(\sigma) = g$  and  $d_1(\sigma) = f$ .



## Remark

The homotopy category  $\text{Ho}(X)$  of a quasi-category  $X$  is defined by passing to homotopy classes of 1-simplices.

## Proposition

The functor  $\text{Ho} : \mathbf{qCat} \rightarrow \mathbf{Cat}$ , which sends a quasi-category to its homotopy category, is left adjoint to  $N$ .

## Remark

The adjunction  $\text{Ho} \dashv N$  is an instance of the general *nerve-realization* adjunction.

## Definition

**qCat** is the 2-category having quasi-categories as 0-cells and such that, for every pair of quasi-categories  $X$  and  $Y$ , the hom-category is defined to be  $\mathbf{qCat}(X, Y) := \text{Ho}(Y^X)$ .

# Joyal's model structure



## Remark

A model structure is *uniquely* determined by any of the following information:

- (i) the cofibrations and weak equivalences,
- (ii) the fibrations and weak equivalences,
- (iii) the cofibrations and fibrations,
- (iv) the cofibrations and fibrant objects,
- (v) the fibrations and cofibrant objects.

# Joyal's model structure



## Remark

A model structure is *uniquely* determined by any of the following information:

- (i) the cofibrations and weak equivalences,
- (ii) the fibrations and weak equivalences,
- (iii) the cofibrations and fibrations,
- (iv) the cofibrations and fibrant objects,
- (v) the fibrations and cofibrant objects.

## Proposition

There exists a model structure on **sSet** s.t. the cofibrations are the monomorphisms and the fibrant objects are the quasi-categories. This is called the *Joyal model structure*.

# Prederivators



## Definition

A *prederivator* is a strict 2-functor  $\mathbb{D}: \underline{\mathbf{Cat}}^{\text{op}} \rightarrow \underline{\mathbf{CAT}}$ .

## Definition

A *prederivator* is a strict 2-functor  $\mathbb{D}: \underline{\mathbf{Cat}}^{\text{op}} \rightarrow \underline{\mathbf{CAT}}$ .

## Example

Let  $\mathbf{C}$  be a category. Then  $y_{\mathbf{C}}: \underline{\mathbf{Cat}}^{\text{op}} \rightarrow \underline{\mathbf{CAT}}$ ,  $J \mapsto \mathbf{C}^J$  is called the *prederivator represented by  $\mathbf{C}$* .

# Prederivators

## Definition

A *prederivative* is a strict 2-functor  $\mathbb{D}: \underline{\mathbf{Cat}}^{\text{op}} \rightarrow \underline{\mathbf{CAT}}$ .

## Example

Let  $\mathbf{C}$  be a category. Then  $y_{\mathbf{C}}: \underline{\mathbf{Cat}}^{\text{op}} \rightarrow \underline{\mathbf{CAT}}$ ,  $J \mapsto \mathbf{C}^J$  is called the *prederivative represented by  $\mathbf{C}$* .

## Example

Let  $\mathbb{D}$  be a prederivative and let  $M$  be a fixed category. Then

$$\begin{aligned}\mathbb{D}^M: \underline{\mathbf{Cat}}^{\text{op}} &\rightarrow \underline{\mathbf{CAT}} \\ J &\mapsto \mathbb{D}^M(J) = \mathbb{D}(M \times J)\end{aligned}$$

is called the *shifted prederivative*.

## Example

If  $X$  is a quasi-category we define the prederivator associated to  $X$  as follows

$$\begin{aligned}\mathbf{Ho}_X: \underline{\mathbf{Cat}}^{\text{op}} &\rightarrow \underline{\mathbf{CAT}} \\ J &\mapsto \mathbf{Ho}(X^{N(J)})\end{aligned}$$

## Example

If  $X$  is a quasi-category we define the prederivator associated to  $X$  as follows

$$\begin{aligned}\mathbf{Ho}_X: \underline{\mathbf{Cat}}^{\text{op}} &\rightarrow \underline{\mathbf{CAT}} \\ J &\mapsto \mathbf{Ho}(X^{N(J)})\end{aligned}$$

## Definition

A *morphism of prederivators*  $F: \mathbb{D} \rightarrow \mathbb{D}'$  is a pseudonatural transformation between them.

## Definition

A *natural transformation*  $\tau: F \Rightarrow G$  is a modification of the pseudonatural transformations  $F$  and  $G$ .

# Enhancements of prederivators



## Definition

**PDer<sub>•</sub>** is the simplicially enriched category such that, for every pair of prederivators  $\mathbb{D}_1, \mathbb{D}_2$ , the simplicial set of morphisms is

**PDer**( $\mathbb{D}_1, \mathbb{D}_2$ ):  $\Delta^{\text{op}} \rightarrow \mathbf{Set}$

$$[n] \mapsto \mathbf{PDer}^{\text{st}}(\mathbb{D}_1, \mathbb{D}_2^{[n]})$$

$$([m] \rightarrow [n]) \mapsto \mathbf{PDer}^{\text{st}}(\mathbb{D}_1, \mathbb{D}_2^{[n]}) \rightarrow \mathbf{PDer}^{\text{st}}(\mathbb{D}_1, \mathbb{D}_2^{[m]})$$

# Enhancements of prederivators

## Definition

**PDer<sub>•</sub>** is the simplicially enriched category such that, for every pair of prederivators  $\mathbb{D}_1, \mathbb{D}_2$ , the simplicial set of morphisms is

**PDer**( $\mathbb{D}_1, \mathbb{D}_2$ ):  $\Delta^{\text{op}} \rightarrow \mathbf{Set}$

$$[n] \mapsto \mathbf{PDer}^{\text{st}}(\mathbb{D}_1, \mathbb{D}_2^{[n]})$$

$$([m] \rightarrow [n]) \mapsto \mathbf{PDer}^{\text{st}}(\mathbb{D}_1, \mathbb{D}_2^{[n]}) \rightarrow \mathbf{PDer}^{\text{st}}(\mathbb{D}_1, \mathbb{D}_2^{[m]})$$

## Definition

**PDer** is the 2-category having prederivators as 0-cells, morphisms of prederivators as 1-cells and natural transformations between those morphisms as 2-cells.

# Simplicial embedding

## Definition

Let us define the functor

$$\begin{aligned}\mathbf{Ho} : \mathbf{qCat} &\rightarrow \mathbf{PDer}^{\text{st}} \\ X &\mapsto \mathbf{Ho}_X \\ X \rightarrow Y &\mapsto \mathbf{Ho}_X \rightarrow \mathbf{Ho}_Y\end{aligned}$$

where the action on morphisms is obtained componentwise by applying the functor  $(-)^{N(J)}$  and then the functor  $\mathbf{Ho}$ , for every  $J \in \mathbf{Cat}$ .

## Proposition

$\mathbf{Ho}$  extends to a simplicial functor  $\mathbf{Ho}_\bullet : \mathbf{qCat}_\bullet \rightarrow \mathbf{PDer}_\bullet$ .

- the action on objects is given by that of  $\mathbf{Ho}$ ,
- consider the action of  $\mathbf{Ho}$  between the set of morphisms of  $\mathbf{qCat}$  and  $\mathbf{PDer}$ :  $\mathbf{qCat}(X, Y^{\Delta^n}) \xrightarrow{\mathbf{Ho}} \mathbf{PDer}(\mathbf{Ho}_X, \mathbf{Ho}_{Y^{\Delta^n}})$ ,
- notice that  $\mathbf{qCat}(X, Y^{\Delta^n}) = \mathbf{qCat}_n(X, Y)$  by definition and check that  $\mathbf{PDer}(\mathbf{Ho}_X, \mathbf{Ho}_{Y^{\Delta^n}}) \cong \mathbf{PDer}(\mathbf{Ho}_X, \mathbf{Ho}_Y^{[n]}) = \mathbf{PDer}_n(\mathbf{Ho}_X, \mathbf{Ho}_Y)$  via a chain of isomorphisms,
- define  $\mathbf{Ho}_\bullet$  so that on  $n$ -simplices it agrees with  $\mathbf{Ho}$ .

- the action on objects is given by that of  $\mathbf{Ho}$ ,
- consider the action of  $\mathbf{Ho}$  between the set of morphisms of  $\mathbf{qCat}$  and  $\mathbf{PDer}$ :  $\mathbf{qCat}(X, Y^{\Delta^n}) \xrightarrow{\mathbf{Ho}} \mathbf{PDer}(\mathbf{Ho}_X, \mathbf{Ho}_{Y^{\Delta^n}})$ ,
- notice that  $\mathbf{qCat}(X, Y^{\Delta^n}) = \mathbf{qCat}_n(X, Y)$  by definition and check that  $\mathbf{PDer}(\mathbf{Ho}_X, \mathbf{Ho}_{Y^{\Delta^n}}) \cong \mathbf{PDer}(\mathbf{Ho}_X, \mathbf{Ho}_Y^{[n]}) = \mathbf{PDer}_n(\mathbf{Ho}_X, \mathbf{Ho}_Y)$  via a chain of isomorphisms,
- define  $\mathbf{Ho}_\bullet$  so that on  $n$ -simplices it agrees with  $\mathbf{Ho}$ .

## Theorem (Carlson, 2016)

$\mathbf{Ho}_\bullet$  is simplicially fully faithful.

## Sketch of the proof

- prove that  $\mathbf{Ho}$  is fully faithful (not so easy),
- extend it to  $\mathbf{Ho}_\bullet$  (easy).

# 2-categorical embedding

## Proposition

**Ho** extends to a 2-functor  $\underline{\mathbf{Ho}} : \underline{\mathbf{qCat}} \rightarrow \underline{\mathbf{PDer}}$ .

## Sketch of the proof

- define  $\underline{\mathbf{Ho}}$  just like  $\mathbf{Ho}$  at the level of 0-cells,
- define a 2-categorical enhancement of  $\mathbf{Ho} : \mathbf{qCat} \rightarrow \mathbf{Cat}$  via the product-hom adjunction of  $\mathbf{qCat}$ ,
- define a 2-categorical enhancement of the nerve functor using the isomorphism  $N(\mathbf{B}^{\mathbf{A}}) \cong N(\mathbf{B})^{N(\mathbf{A})}$ .

# 2-categorical embedding

## Proposition

**Ho** extends to a 2-functor  $\underline{\mathbf{Ho}} : \underline{\mathbf{qCat}} \rightarrow \underline{\mathbf{PDer}}$ .

## Sketch of the proof

- define  $\underline{\mathbf{Ho}}$  just like  $\mathbf{Ho}$  at the level of 0-cells,
- define a 2-categorical enhancement of  $\mathbf{Ho} : \mathbf{qCat} \rightarrow \mathbf{Cat}$  via the product-hom adjunction of  $\mathbf{qCat}$ ,
- define a 2-categorical enhancement of the nerve functor using the isomorphism  $N(\mathbf{B}^{\mathbf{A}}) \cong N(\mathbf{B})^{N(\mathbf{A})}$ .

## Theorem (Carlson, 2016)

The restriction of the 2-functor  $\underline{\mathbf{Ho}}$  to the 2-category of small quasi-categories is bicategorically fully faithful.

# Model structure on prederivators



Recall that  $x \in X_n$  is *degenerate* if  $x = s_i y$ , for some  $y \in X_{n-1}$  and  $0 \leq i \leq n$ , otherwise it is *nondegenerate*.

## Definition

A category is called *homotopy finite* if its nerve has finitely many nondegenerate simplices.

# Model structure on prederivators



Recall that  $x \in X_n$  is *degenerate* if  $x = s_i y$ , for some  $y \in X_{n-1}$  and  $0 \leq i \leq n$ , otherwise it is *nondegenerate*.

## Definition

A category is called *homotopy finite* if its nerve has finitely many nondegenerate simplices.

## Remarks

- 1  $[n]$  is homotopy finite, for every  $n \in \mathbb{N}$ .
- 2 Homotopy finite  $\Rightarrow$  finite, but the converse is not true (take a finite group  $G$  seen as a one-object groupoid with  $G$  as its finite group of automorphisms).
- 3 We use **HFin** to denote the 2-category of homotopy finite categories.

$\mathbf{PDer}_{\mathbf{HFin}}^{\text{st}}$  is the category of 2-functors  $\mathbf{HFin}^{\text{op}} \rightarrow \mathbf{Cat}$  and strict natural transformations.

$\mathbf{PDer}_{\mathbf{HFin}}^{\text{st}}$  is the category of 2-functors  $\mathbf{HFin}^{\text{op}} \rightarrow \mathbf{Cat}$  and strict natural transformations.

**Theorem (Fuentes-Keuthan, Kedziorek and Rovelli, 2018)**

There exists a model structure on  $\mathbf{PDer}_{\mathbf{HFin}}^{\text{st}}$  that is Quillen equivalent to the Joyal model structure on  $\mathbf{sSet}$ .

## Sketch of the proof

- construct a pair of adjoint functors  $\mathbf{sSet} \rightleftarrows \mathbf{PDer}_{\mathbf{HFin}}^{\text{st}}$ ,
- $F$  is a w.e./fib. in  $\mathbf{PDer}_{\mathbf{HFin}}^{\text{st}}$   $\overset{\text{def}}{\iff}$   $RF$  is a Joyal w.e./fib.,
- $L \dashv R$  is a Quillen adjunction thanks to a Kan's theorem,
- $L \dashv R$  is a Quillen equivalence (easy check).

$$\begin{array}{ccc} & \curvearrowright & \\ & \perp & \\ & \curvearrowleft & \end{array}$$