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Categorical preliminaries

Definition 0.0.1 (Categories). A category C consists of:

1. a collection of objects Ob(C);

2. a collection of arrows Ar(C);

3. two maps dom, cod: Ar(C)→ Ob(C);

4. a map id− : Ob(C)→ Ar(C) with dom(idc) = c = cod(idc);

5. for every f, g ∈ Ar(C) such that cod(f) = dom(g) a unique composite morphism gf such
that cod(gf) = cod(g), dom(gf) = dom(f).

This data has to satisfy the following axioms

1. given f ∈ Ar(C), c = dom(f) and c′ = cod(f), idc′ f = f = idc, that is the composition is
unital;

2. given a composable triple f, g, h ∈ Ar(C), h(gf) = (hg)f , that is the composition is
associative.

An arrow f such that c = dom(f) and c′ = cod(f) is denoted f : c→ c′.

Definition 0.0.2 (Functors).

Definition 0.0.3 (Full functors, faithful functor).

Definition 0.0.4 (Natural transformations).

Definition 0.0.5 (Equivalent functors).

Definition 0.0.6 (Representable Functors).

Definition 0.0.7 (Whiskering).

Definition 0.0.8 (Horizontal and vertical composition of nat.transf.).

Definition 0.0.9 (adjunctions).

Lemma 0.0.10 (Yoneda).

Proof.

We will denote by よ (the kana for “Yo”) the Yoneda embedding C ↪→ SetC
op

.
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1 Monads and algebras

Throughout mathematics we encounter structures defined by some action morphisms. Here
we give some examples.

Example 1.0.1. 1. Given a group G, we may consider a G-set X described by an action
map G×X → X.

2. Given an abelian group M and a ring R, we can get an R-module M by fixing a group
homomorphism R⊗Z M →M .

3. Given a monoidM in Set, we get a map Πn
k=1M →M , (m1, . . . ,mn) 7→ ((. . . ((m1m2)m3) . . .)mn−1)mn.

This induces an action map from W (M) = qn∈NΠn
k=1M , the set of words on M , to M .

4. Given a set X, let UX be the set of ultrafilters on it. Any compact T2 topology on X
allows us to see each ultrafilter as a system of neighborhoods of a unique point in X, hence
it gives us a unique map UX → X sending each ultrafilter to the respective point.

5. Given a directed graph D = (V,E, E Vt
s

), we can create its free category FD, where
the objects are the vertices and FD(v, w) = {finite paths v → . . . → w}. We set idv to
be the path of length 0, while composition is just the concatenation of paths.

In particular, if D is the directed graph with V = {0, . . . , n} and an edge j → k if and
only if k = j + 1, we have FD ∼= [n].

If D = {∗} and E = {∗ → ∗}, then FD(∗, ∗) ∼= N.

Given a small category C, we may consider the underlying directed graph U C = D with
V = Ob(C), E = Ar(C), s = dom and t = cod. We get then an action map UFU C→ U C

sending a finite path to its composite. This map is a morphism of directed graphs.

Notice that we always have a category C and some functor T : C → C with an action map
T C→ C. How can we see all of these examples as specific instances of a general phenomenon?

Definition 1.0.2. A monad on a category C is a triple (T, µ, η) where T : C→ C is a functor,
while µ : T 2 ⇒ T and η : idC ⇒ T are natural transformations such that the diagrams

T 3 T 2

T 2 T

µT

Tµ

µ

µ

T T 2 T

T

ηT

µ

Tη

commute. µ is called the multiplicative map, while η is the unit of T .
The commutativity of the first diagram is equivalent to stating that the following two diagrams

are equal.

C C

C C

µ

T

T

Tµ

T

T
=

C C

C C

µ

T

µ
T

T

T

T

2
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On the other hand, the second diagram can be rephrased as follows:

C

C C

µη
T

T

T
=

C

C

T T= =

C

C C

µ η
T

T

T

A monad naturally defines other algebraic structures, which we now introduce.

Definition 1.0.3. Given a monad (T, µ, η), a T -algebra or T -module is a pair (a, α), where
a ∈ Ob(C) and α : Ta→ a is such that the following diagrams commute.

T 2a Ta

Ta a

µa

Tα

α

α

a Ta

a

ηa

α

Definition 1.0.4. A morphism of T -algebras (a, α)→ (b, β) is a morphism f : a→ b such that
the following diagram commutes:

Ta Tb

a b

α

Tf

β

f

T -algebras form a category T -Alg, which has a natural forgetful functor UT : T -Alg→ C.
We now show how to recover the examples previously given with this language.

Example 1.0.5. 1.

T = G×− : Set→ Set

µA : G× (G×A)→ G×A
(g, (h, a)) 7→ (gh, a)

ηA : A→ G×A
a 7→ (e, a)

is a monad and (A,α) is a T -algebra if and only if A is a G-set. It follows that T -Alg ∼=
G-Set.

2. Given a ring R, T = R ⊗Z − : Ab→ Ab is a monad when considered with the following
natural transformations:

µ− : R⊗Z (R⊗Z −) ∼= (R⊗Z R)⊗Z − ⇒ R⊗Z −
η− : − ∼= Z⊗Z− ⇒ R⊗Z −

We have that (R⊗Z −) -Alg ∼= ModR.

3. Consider W : Set → Set given by WX = qn∈NΠn
k=1X. Multiplication µX : WWX →

WX is given by concatenation of words, while the unit ηX : X → WX is just x 7→ (x).
With this, W -Alg ∼= Mon(Set).
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4. The functor U defined in Example 4, equipped with suitable natural transformations, is
a monad on Set and U -Alg ∼= CHTop, the category of compact T2 spaces.

5. The free-forgetful adjunction F a U between categories and directed graphs induces a
monad on the latter, with UF -Alg ∼= Cat.

Now that we have introduced these structures, our aim is to characterize monadic functors,
which we will soon define.

First of all, notice that UT is faithful by construction, hence U must be faithful, but more is
true.

Lemma 1.0.6. The functor UT is conservative, that is if UT f is an isomorphism then f is an
isomorphism of T -algebras.

Proof. Suppose that g is the inverse of f : a→ b and f induces a morphism (a, α)→ (b, β). We
only need to prove that in the diagram

Tb Ta Tb

b a b

β

Tg

α

Tf

β

g f

the square on the left commutes, that is g · β = α · Tg. We see that f · g · β = β and
f · α · Tg = β · Tf · Tg = β · T (f · g) = β · T idb = β, hence the thesis.

Remark 1.0.7. Notice that the forgetful functor U : Top→ Set can’t be monadic since it does
not reflect isomorphisms. However, if we restrict it to the full subcategory of Top spanned by
compact T2 spaces we indeed obtain a monadic functor.

Proposition 1.0.8. The functor UT : T -Alg→ C has a left adjoint F T : C→ T -Alg such that

F T c = (Tc, µc), F
T f : (Tc, µc)

Tf−−→ (Td, µd) and UTF T = T . Furthermore, the unit of this
adjunction is given by η and the counit has components ε(a,α) = α : (Ta, µa)→ (a, α).

Proof. (i) To show that (Tc, µc) is a T -algebra we need the following diagrams to be com-
mutative.

T 3c T 2c

T 2c Tc

µTc

Tµc

µc

µc

Tc T 2c

Tc

ηTc

µc

These are exactly the associativity and one of the unit laws for (T, µ, η).

(ii) For every f : c → c′, Tf is a morphism of algebras (Tc, µc) → (Tc′, µc′) because the
diagram

T 2c T 2c′

Tc Tc′

µc

T 2f

µc′

Tf

is commutative by naturality of µ, hence F T is defined on morphisms. It is a functor by
functoriality of T .



5

(iii) The unit is natural by assumption. We claim that ε(a,α) = α is a morphism of algebras

F TUT (a, α) = F Ta = (Ta, µa)→ idT -Alg(a, α) = (a, α)

and ε is a natural transformation F TUT ⇒ idT -Alg. Let’s check it. We know that α is a
morphism of algebras if and only if

T 2a Ta

Ta a

µa

Tα

α

α

is commutative, but this is one of the two T -algebra axioms! Moreover, to prove that ε is
natural, we need to show that

(Ta, µa) (a, α)

(Tb, µb) (b, β)

Tf

α=ε(a,α)

f

β=ε(b,β)

is commutative, but this is the axiom for f to be a morphism of T -algebras!

(iv) It remains to check the two triangular identities εF T ·F T η = idFT and UT ε · ηUT = idUT .
These are to be checked on the components at c and (a, α), respectively.

(Tc, µc) (T 2c, µTc)

(Tc, µc)

Tηc

µTc

a Ta

a

ηa

α

The commutativity of these diagrams is ensured by the second unit law for a monad and
the unit law for the T -algebra (a, α) respectively.

Definition 1.0.9. Given a monad (T, µ, η), T -algebras of the form (Tc, µc) are called free
T -algebras.

Thanks to the proposition above we can prove that, given a monad T , we can always find an
adjunction that generates it. Actually, the converse holds too.

Proposition 1.0.10. If U : D → C has a left adjoint F with unit η and counit ε, then
(UF,UεF, η) is a monad on C. Also, if (T, µ, η) is a monad on C, then (UTF T , UT εF T , η) =
(T, µ, η).

Proof. Let us check the axioms. First of all, associativity holds due to the naturality of the
vertical natural transformation Uε : UFU ⇒ U .

UFUFUF UFUF

UFUF UF

UFUεF

UεFUF UεF

UεF

One could also write down the 2-cells and check that they are equal by making use of the explicit
definition of the horizontal composition.
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On the other end, the unit laws hold by the triangular identities of the adjunction.

UF UFUF UF

UF

ηUF

UεF

UFη

Example 1.0.11. 1. Let us consider the adjunction U : Top � Set : Disc =: F , whose left
adjoint assigns to every set X the discrete topological space FX = (X, 2X). It’s immediate
to see that UFX = X, hence UF = idSet. How many natural transformations idSet =
UF

α
=⇒ UF = idSet are there? We know that idSet

∼= Hom(∗,−), so Nat(idSet, idSet) ∼=
Nat(Hom(∗,−),Hom(∗,−)) ∼= Hom(∗, ∗) = {id∗} by Yoneda, hence α = idSet necessarily.
It follows that (UF,UεF, η) = (idSet, id, id).

2. If S is a set, then Set(S,−) : Set → Set is right adjoint to S × − : Set → Set, so we
get a monad X 7→ Set(S, S ×X). This is called the state monad and it is important in
Computer Science.

1.1 The category of T -actions

Given an adjunction F : C D : U,
a

there is always a comparison morphism D
U−→ UF -Alg

such that

D UF -Alg

C

U

U UUF

commutes. We set Ud = (Ud,UFUd
Uεd−−→ Ud) = (Ud,Uεd). More generally, for a given functor

G : D→ C we can ask what do we need to get a lift G : D→ T -Alg. To get there, we will need
a few more definitions.

Just like a monad (T, µ, η) defines a category T -Alg, it also allows us to construct another
category from functors D→ C.

Definition 1.1.1. Given a monad (T, µ, η) on a category C and fixed another category D,
a T -action on a functor G : D → C is a natural transformation γ : TG ⇒ G such that the
diagrams

T 2G TG

TG G

µG

Tγ

γ

γ

G TG

G

ηG

γ

commute.
A morphism of T -actions (G, γ)

ϕ
=⇒ (K,κ) is a natural transformation ϕ : G⇒ K such that

TG TK

G K

Tϕ

γ κ

ϕ
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commutes.
Up to size issues, T -actions and their morphisms assemble into a category T -Act(D).

Example 1.1.2. 1. The functor UT : T -Alg → C has a T -action given by α : TUT ⇒ UT ,
where α(b,β) := β : Tb→ b.

2. Given an adjunction F : C D : U

a

with unit η : idC ⇒ UF and counit ε : FU ⇒ idD,

we get a monad on (UF,UεF, η) on C. We have then a UF -action Uε : UFU ⇒ U , where
the axioms follow from the triangular identities and the naturality of Uε.

Proposition 1.1.3. (UT , α) is the universal T -action, that is for any category D the functor
Cat(D, T -Alg) → T -Act(D) sending G to (UTG,αG) and β : G ⇒ H to UTβ : (UTG,αG) ⇒
(UTH,αH) is an isomorphism of categories.

Proof. In other words, for every T -action (G, γ) there exists a unique lift G : D→ T -Alg such
that (UTG,αG) = (G, γ) and for every φ : (G, γ) ⇒ (K,κ) there is a unique φ : G ⇒ K with
UTφ = φ.

It is enough to set Gd := (Gd, γd) on objects, Gf := Gf on morphisms, φd := φd and check
the axioms.

D T -Alg

C

∃!G

G
UT

Following the construction in this proof, from the last example we get the comparison functor
for the adjunction F a U . In particular, Ud = (Ud,Uεd). Furthermore, this means that
U : Top→ Set factors through identities.

We conclude this section by defining the aforementioned concept of monadic functors.

Definition 1.1.4. An adjunction F : C D : U

a

is said to be a monadic adjunction if the

canonical comparison functor G : D → GF -Alg is an equivalence of categories. A functor G is
said to be monadic if it admits a left adjoint F such that the pair defines a monadic adjunction.

1.2 Limits and colimits in the category of algebras

We have shown that the forgetful functor UT : T -Alg → C is a right adjoint and as such it
preserves limits. However, more is true.

Proposition 1.2.1. For any monad (T, µ, η) on C, the forgetful functor UT : T -Alg→ C strictly
creates limits.

Proof. This statement means that, for any diagram D : I→ T -Alg such that UTD : I→ C has
a limit (l, κi) in C, there is a unique T -algebra structure λ : T l → l such that κi is a morphism
of T -algebras for all i ∈ I and this makes ((l, λ), κi) into a limit of D.

Now we begin the proof.
First of all, remember that Dφ : Di → Dj is a morphism of T -algebras for all φ : i → j by

assumption, hence the morphisms δi · Tκi : T l → Di define a cone over D, where δi is the T -
algebra structure on Di (notice that here we are abusing the notation since our cone is in C



1.2. Limits and colimits in the category of algebras 8

and over UTD). By the universal property of the limit, there is a unique morphism λ : T l → l
making the following diagram commute for all i.

T l TDi

l Di

λ

Tκi

δi

κi

This tells us that, if the limit ((l, λ), κi) of D exists, it is unique. We have to check that (l, λ)
is a T -algebra.

Notice that for all i all of the faces of the following diagrams, except for possibly the top
ones, commute.

T l

T 2l l

T l

TDi

T 2Di Di

TDi

λ

Tκi

Tλ

µl

T 2κi κi

λ

δi
Tδi

µDi δi

Tκi

T l

l l

TDi

Di Di

λ

Tκi

ηl

κi κi

δiηDi

Since the κi are jointly monic, the upper face commutes and therefore (l, λ) is a T -algebra.
It remains to check that ((l, λ), κi) factors every other cone over D.

Let γi : (x, ζ) → (Di, δi) be a cone over D. Then, there is a unique f : x → l in C such that
κif = γi. We only have to show that f is a morphism of T -algebras (x, ζ)→ (l, λ).

Consider the following diagram and notice that the outer square, the one on the right and the
two triangles commute, hence the square on the left commutes as well since the κi are jointly
monic.

Tx T l TDi

x l Di

Tγi

Tf

ζ

Tκi

λ δi

f

γi

κi

A similar statement holds for colimits.

Proposition 1.2.2. Given a monad (T, µ, η) on C, the forgetful functor UT : T -Alg→ C strictly
creates any colimit preserved by both T and T 2.



1.3. Beck’s monadicity theorem 9

Proof. Similarly to the dual situation, this means that for any diagram D : I → T -Alg such
that UTD : I → C has a colimit (c, κi) preserved by both T and T 2, there is a unique T -algebra
structure λ : Tc→ c such that κi is a morphism of T -algebras for all i ∈ I. This makes ((c, λ), κi)
into a colimit of D.

The proof is essentially dual to the one given earlier, in the sense that we find again a unique
λ : Tc→ c using the universal property of the colimit (Tc, Tκi) of TUTD.

TDi Tc

Di c

Tκi

δi λ

κi

To check that (c, λ) is an algebra we use the universal property of (T 2c, T 2κi), for µ, and the
one of (c, κi), for η.

Remark 1.2.3. • The same statements hold for monadic functors, except for the fact that
they might not create limits and colimits strictly since they are just equivalent to a UT .

• If T is a monad on a complete category C, then T -Alg is complete. If C is cocomplete and
T is cocontinuous, then T -Alg is cocomplete.

Example 1.2.4. Let C be a small category. There is a cocontinuous monad on the category
of Ob(C)-indexed collections of sets whose category of algebras is the functor category [C,Set].
The underlying endofunctor of this monad is defined as

T : [Ob(C),Set]→ [Ob(C),Set]

(Xc)c∈C 7→

(∐
d∈C

C(d, c)×Xd

)
c∈C

Since [Ob(C),Set] is complete and cocomplete, so is [C,Set] (with limits and colimits computed
pointwise).

1.3 Beck’s monadicity theorem

The final ingredient we need to give a characterization of monadic functors is the observation
that T -algebras admit canonical presentations using free algebras.

Example 1.3.1. Pick an epimorphism F � G in the category of groups Grp, where F is a
free group. The kernel of this homomorphism defines a (normal) subgroup K of F , giving rise
to the sequence K � F � G. We can take another epimorphism F ′ � K, with F ′ again a free
group, which presents G as the cokernel of some morphism F ′ → F between free groups. This
argument applies to rings, algebras, etc.

It is natural to ask if we can do this systematically for general T -algebras. Given (a, α) in
T -Alg, we have F TUT (a, α)→ (a, α), that is (Ta, µa)

α−→ (a, α). A candidate1 for F ′ would be
F TUT (Ta, µa) = (T 2a, µTa). Notice that

(T 2a, µTa)
Tα−−→−−→
µa

(Ta, µa)
α−→ (a, α)

1Think about free groups: in that case we take words on Ta.
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is a well defined diagram in T -Alg, with α · µa = α · Tα. Moreover, this is a coequalizer. In
order to prove it using Proposition 1.2.2 we need to check whether UT sends the diagram above
into a coequalizer preserved by T and T 2. In C, we extend the diagram to

T 2a Ta a
Tα

µa

α

ηTa ηa

,

where the following equations hold true by naturality or axioms: α · Tα = α · µa, α · ηa = ida,
µa · ηTa = idTa and ηa · α = Tα · ηTa. It is a particular case of a more general concept.

Definition 1.3.2. A split coequalizer is a diagram of the form

a b c
f

g

h

t s

so that hf = hg, hs = idc, gt = idb, and ft = sh.

Proposition 1.3.3. In the above situation,

a b c
f

g

h

is a coequalizer. In particular, any functor preserves this coequalizer.

Proof. Take k : b→ d such that kf = kg and define k := ks. Then we have

kh = ksh = kft = kgt = k.

Uniqueness is clear since h is a (split) epimorphism.

T and T 2 preserve split coequalizers, hence they preserve our coequalizer.

Corollary 1.3.4. Let T be a monad on C and (a, α) a T -algebra. Then

(T 2a, µTa)
Tα−−→−−→
µa

(Ta, µa)
α−→ (a, α)

is a coequalizer in T -Alg, which UT : T -Alg→ C sends to a split coequalizer in C.

Proof. We have already observed that the second statement holds, so that coeq(UTTα,UTµa)
is preserved by T and T 2, hence there exists a unique lift of the (split) coequalizer in C to a
coequalizer in T -Alg.

Results like the previous one inspire us to look at the parallel pairs of morphisms in a category
which are sent to split coequalizers or, to say it better, to a parallel pair of morphisms that
can be extended to a split coequalizer diagram. This kind of pairs will be of crucial importance
when characterizing monadic functors.

Definition 1.3.5. Let U : D → C be a functor. A pair of morphisms f, g : d ⇒ d′ in D is
U -split if Uf,Ug : Ud⇒ Ud′ is part of a split coequalizer in C.

Remark 1.3.6. Given a T -algebra (a, α), the morphisms Tα, µa : (T 2a, µTa) ⇒ (Ta, µa) form
a UT -split pair. Moreover, T -Alg has coequalizers of UT -split pairs and UT preserves them.
This implies that functors equivalent to UT satisfy three conditions:
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1. they have a left adjoint;

2. they are conservative;

3. U -split pairs have coequalizers which are preserved by U .

As it turns out, these properties are enough for U to be monadic.

Theorem 1 (Beck). Let U : D→ C be a right adjoint to F . Let (T = UF,UεF, η) be the
induced monad and U : D→ T -Alg be the comparison functor.

1. If D has coequalizers of U -split pairs, then U has a left adjoint F : T -Alg→ D;

2. if, in addition, U preserves coequalizers of U -split pairs, the unit η : idT -Alg ⇒ U F is
an isomorphism;

3. if U is also conservative, then U is an equivalence of categories.

Proof. 1. For each free T -algebra (Ta, µa) we have

T -Alg((Ta, µa), U−) = T -Alg(F Ta, U−)

∼= C(a, UTU−)

= C(a, U−)
∼= D(Fa,−),

therefore the value of F at (Ta, µa) has to be Fa. Since every T -algebra is a coequalizer
of free algebras which is preserved by UT , we may define F (a, α) as the coequalizer of a
pair of morphisms FTa ⇒ Fa. We write this as FUFUT (a, α) ⇒ FUT (a, α). Consider
the following pair of morphisms of functors

FUFUT
Fα−−−−→−−−−→
εFUT

FUT

in the functor category [T -Alg,D]. We claim that this pair has a coequalizer and F : T -Alg→
D is left adjoint to U . Note that the pair of morphisms just above becomes split after the
composition with U : D→ C. In fact

UFUFUT UFUT UT
UFα

UεFUT

α

ηUFUT ηUT

is a split coequalizer in [T -Alg,C], given that it holds pointwise since UF = T . Let us de-
note by β : FUT → F the colimit (computed pointwise) of the pair Fα, εFUT : FUFUT ⇒
FUT . Precomposing this pair with U and recalling that αU = Uε, UTU = U , we get the
pair

FUFU
FUε−−−→−−−→
εFU

FU,
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which is coequalized by ε : FU ⇒ idD.

FUFU FU F U

idD

FUε

εFU

ε

βU

∃!ε

Since F U is the coequalizer of the diagram above, there exists a unique ε : F U ⇒ idD

such that ε ·βU = ε. To get the unit η : idT -Alg ⇒ U F we need to describe a morphism of
T -actions (UT , α) → (UTU F, αU F ). We claim that the natural transformation induced
by the universal property of the split coequalizer in the first row

UFUFUT UFUT UT

UTUFUFUT UTUFUT UTU F

UFα

UεFUT

α

∃!η
UTUFα

UTUεFUT UTUβ

is a morphism of T -actions2.

Unraveling what this means, we have to check that the diagram

UFa UFUF (a, α)

a UF (a, α)

UFη(a,α)

α UεF (a,α)

η(a,α)

is commutative. We know that η · α = Uβ by the definition of η. Moreover, α is a split
epimorphism in C, hence we can precompose with UFα (again a split epi) and check the
commutativity of the resulting diagram. We get the diagram

UFUFa

UFa UFUF (a, α) UFa

a UF (a, α)

UFα
UFUβ(a,α)

UεFa

nat. of ε

α

UFη(a,α)

Uβ(a,α) UεF (a,α)

Uβ(a,α)

η(a,α)

The definition of β as a coequalizer implies that β(a,α) · Fα = β(a,α) · εFa, so we get

the natural transformation η : idT -Alg ⇒ U F . The only thing left to do is checking the
triangular identities, which is left to the reader.

2. If U preserves coequalizers of U -split pairs, both UF and UT are coequalizers of the above
diagram, hence η is an isomorphism.

2In fact, this tells us that the morphism η(a,α) : a→ UTU F (a, α) in C lifts uniquely to a morphism of T -algebras

η(a,α) : (a, α) → U F (a, α).
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3. From the triangular identities, Uε·ηU = idU , hence Uε is an isomorphism. Being UTU = U
conservative, ε is an isomorphism as well.

Definition 1.3.7. A pair f, g : c ⇒ d in a category C is reflexive if there exists a common
section i : d → c, that is f · i = g · i = idd. A coequalizer of a reflexive pair is a reflexive
coequalizer.

Remark 1.3.8. To give a cone of a reflexive pair it is enough to give a map h : d → x such

that h · f = h · g, hence colim(c d) ∼= colim(c⇒ d).

Proposition 1.3.9. In Beck’s monadicity theorem it suffices for (1) that coequalizers of reflexive
U -split pairs exist, while in (2) and (3) we only need for them to be preserved.

Proof. The pair

FUFUT
Fα−−−−→−−−−→
εFUT

FUT

has FηUT as common section. In fact, α · ηUT = idUT by the unit law of the T -action
α : TUT ⇒ UT and εF · Fη = idF by the triangular identities.

Example 1.3.10. Let A and B be small categories, C a category which is both complete and
cocomplete and G : A→ B a functor. The restriction along G, G∗, has both adjoints, given by
left and right Kan extensions. Notice that the induced monad on [A,C] is cocontinuous since G∗

is a left adjoint. Moreover, G∗ is conservative if G is essentially surjective, thus any essentially
surjective functor G induces a monadic adjunction as follows:

[B,C] G∗ LanG -Alg

[A,C]

G∗

G∗

∼



2 Categories of algebras

2.1 Sifted colimits

In this chapter we are going to show how various categories emerging in algebra can be
studied naturally using the theory of monads. We will begin by introducing the notion of
algebraic theory, but first we need some preliminary definitions and results.

Definition 2.1.1. A functor F : I→ J between small categories is called final if for any diagram
D : J→ C the comparison morphism colimIDF → colimJD is an isomorphism whenever both
colimits exist.

Proposition 2.1.2. Let F : I → J be a functor between small categories. The following are
equivalent:

(i) F is final;

(ii) the unique isomorphism

Iop Jop

Set

F op

∗ ∗
∼

exibits ∗ as LanF op ∗;

(iii) for each j ∈ J, the category (j ↓ F ) is connected.

Proof. (ii)⇐⇒ (iii) We have LanF op ∗(j) ∼= colim(j↓F ) ∗ by the formula for Kan extensions. A
cone of (j ↓ F ) → Set, (φ, j′) 7→ ∗, is terminal if and only if (j ↓ F ) is connected, hence
the thesis.

(ii) =⇒ (i) Let D : J→ C be a diagram. We can then write Cocone(D,−) as follows:

Cocone(D,X) ∼= Nat(∗,C(D,X)) ∼= [Jop,Set](∗,C(D,X))

By definition of left Kan extension, we also have

Cocone(DF,X) ∼= [Iop,Set](∗,C(DF,X)) ∼= [Jop,Set](LanF op ∗,C(D,X))

If LanF op ∗ ∼= ∗, this shows that colimIDF ∼= colimJD.

(i) =⇒ (iii) Left as an exercise.

Definition 2.1.3. A small category I is sifted if the diagonal ∆: I → I× I is final. A colimit
is sifted if the domain category is.

14
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Example 2.1.4. 1. For any filtered category I, the category ((i, i′) ↓ ∆) is again filtered for
any (i, i′) ∈ I× I and hence connected, thus filtered colimits are sifted.

2. Coequalizers are not sifted. Indeed, their indexing category I = {1 ⇒ 0} is such that
((0, 1) ↓ ∆) is not connected. However, reflexive coequalizers are sifted. Checking it for
yourself may be a tedious yet useful exercise.

3. Initial objects and coproducts are not sifted, for their slice categories are either empty or
have several connected components.

4. Pushouts are not sifted.

Proposition 2.1.5. If F : A×B → C is a functor preserving reflexive coequalizers in each
variable, that is for any a ∈ A, b ∈ B the functors F (a,−) : B → C and F (−, b) : A → C

preserve reflexive coequalizers, then F preserves reflexive coequalizers as well.

Proof. We need to check that, given a reflexive coequalizer a0 a1 a2 in A and b0 b1 b2
in B, the diagonal of the following diagram is a coequalizer diagram in C.

F (a0, b0) F (a1, b0) F (a2, b0)

F (a0, b1) F (a1, b1) F (a2, b1)

F (a0, b2) F (a1, b2) F (a2, b2)

From general facts, F (a2, b2) is the colimit of the square in the top left. We may prove this
using the sections, however in this case we can use the fact that a reflexive coequalizer is sifted
and apply the last proposition.

Example 2.1.6. The functor Set×Set
−×−−−−→ Set satisfies the hypothesis of the theorem since

Set is cartesian closed, hence X 7→ X ×X preserves reflexive coequalizers by the proposition.
This shows that Set(X,−) ∼= Πx∈XSet(∗,−) preserves reflexive coequalizers if X is finite, hence
the functor Set(X,−) : Set→ Set is monadic with T = Set(X,X ×−) for X finite.

Set T -Alg

Set

∼=

Set(X,−) UT

We also have the following result.

Proposition 2.1.7. If F : B×C → D is a functor preserving sifted colimits in each variable,
then it preserves them as a functor B×C→ D.

Remark 2.1.8. This proposition is false if we drop the siftedness condition, for under the

functor Set× Set
−×−−−−→ Set we have (∗+ ∗)× (∗+ ∗) 6∼= ∗+ ∗ ∼= (∗ × ∗) + (∗ × ∗).
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2.2 Algebraic Theories and Finitary Monads

Many objects in algebra can be described as sets X with some finitary operations Xni mi−−→ X
subject to a list of axioms involving the mi and their products.

Example 2.2.1. (Commutative) monoids and groups, rings and, fixed a ring R, R-modules,
where for each r ∈ R we specify an operation X

r−→ X.

We can construct categories whose objects are sets paired with operations fullfilling the axioms
and functions commuting with the operations as morphisms. These are called models for single-
sorted finitary theories.

Proposition 2.2.2. The forgetful functor from a category C of models of a single-sorted finitary
theory to Set creates sifted colimits.

Proof. Notice that the n-fold product Set
(−)n−−−→ Set factors as Set

∆−→ Setn
−×···×−−−−−−→ Set,

hence it preserves sifted colimits. This gives us unique candidates for operations on the colimit
such that the cocone in Set is a morphism of models. These operations satisfy the axioms
because the domain is in each case again of the form colimn.

Xni Y ni Zni

X Y Z

mi mi ∃!mi

Corollary 2.2.3. Let C,D be categories of models of single sorted finitary theories. Any functor
F : C → D which commutes with the forgetful functor to Set preserves reflexive coequalizers.
If F has a left adjoint, then it is monadic.

Proof. The forgetful functors C→ Set, D→ Set are both conservative, hence F is as well. The
statement about reflexive coequalizers was just proved and the last claim follows from Beck’s
theorem.

Example 2.2.4. The forgetful functor CAlgR →ModR is monadic for any commutative ring
R. The same goes for the forgetful functors from Grp, Ab, ModR, Rng, CRng, Ring and
CRing to Set.

Definition 2.2.5. A functor F : C → D is finitary if it commutes with filtered colimits. A
monad is finitary if its underlying endofunctor T is finitary.

Remark 2.2.6. Asking for the underlying endofunctor T to be finitary is equivalent to asking
for its forgetful functor UT to be finitary.

Example 2.2.7. All the forgetful functors from single sorted finitary theories which have a left
adjoint (fact: all of them do) come from finitary monads on Set.

In general, preserving filtered colimits is a weaker condition than preserving sifted colimits.
However, for endofunctors on Set the two coincide.

In order to prove this, we need to know how such an endofunctor is determined by its action
on sets and the idea is to check its behaviour on finite sets, since every set is a directed union
of its finite subsets.

We write [C,D]fin for the full subcategory of [C,D] whose objects are finitary functors, Setfin

for the category of finite sets.
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Theorem 2.2.8. Restriction along the inclusion K : Setfin → Set induces an equivalence
[Set,Set]fin → [Setfin,Set] whose inverse sends F to LanK F .

Before proving this theorem, we present some consequences.

Corollary 2.2.9. Any finitary functor Set → Set preserves sifted colimits. In particular,
if T : Set → Set is the underlying endofunctor of a finitary monad, then UT : T -Alg → Set
strictlycreates sifted colimits.

Proof. Recall that LanK : [Setfin,Set]→ [Set,Set]fin is a left adjoint and on both sides colimits
are computed pointwise. Moreover, functors preserving colimits of a given class are closed under
formation of pointwise colimits, hence it is enough to check on a generating set.

If for all Fi : Setfin → Set we have that LanK Fi preserves sifted colimits, then the functor
colimI LanK Fi ∼= LanK colimI Fi preserves sifted colimits as well.

Any functor F : Setfin → Set is a colimit of representable functors Setfin(X,−). Indeed, it
is enough to consider (よ ↓ F ) → [Setfin,Set], (Setfin(X,−) ⇒ F ) 7→ Setfin(X,−) and notice
that this being a colimit diagram essentially follows from Yoneda as F ∼= colim(よ↓F )よa.

By the previous theorem, it is enough to check now that the functor LanK Setfin(X,−)
preserves sifted colimits.

Observe the following diagram:

Setfin Set

Set

K

Setfin(X,−) LanK Setfin(X,−)

A natural transformation LanK Setfin(X,−) ⇒ G by definition is equivalent to a natural
transformation Setfin(X,−) ⇒ GK, which by Yoneda is equivalent to a map ∗ → GKX,
which again by Yoneda corresponds to a natural transformation Set(KX,−) ⇒ G, hence
LanK Setfin(X,−) ∼= Set(KX,−).

We only have to check now that Set(KX,−) ∼= Πx∈XSet(∗,−) preserves sifted colimits, but
this is just the functor Y 7→ Πx∈XY , which as we know commutes with sifted colimits.

Proposition 2.2.10. A category C with sifted colimits is cocomplete if and only if it has an
initial object and binary coproducts.

Proof. One implication is obvious. For the other one, notice that we get finite coproducts
immediately and an infinite coproduct can be written as a filtered colimit of finite coproducts.

We are only missing coequalizers. If f, g : a⇒ b is a pair, then f + id, g + id: a+ b b : inb
(where inb is the inclusion of b in the coproduct) is a reflexive pair, hence the coequalizer
c = coeq(a + b ⇒ b) exists and coequalizes the original pair. The universal arrow h : b → c is
also a coequalizer of f, g : a⇒ b.

Theorem 2.2.11. Let X be a finite set, T :
∏
x∈X Set →

∏
x∈X Set a finitary monad. Then

T -Alg is cocomplete.

Proof. The category T -Alg has always an initial object, namely the free algebra of the initial

object
(
T
∏
x∈X ∅, µ∏x∈X ∅

)
. Similarly, for a, b ∈

∏
x∈X Set, using that F T is a left adjoint

(hence it preserves colimits) we find that
(
T (a

∐
b) , µa

∐
b

)
is a coproduct of (Ta, µa) and
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(Tb, µb). Therefore T -Alg has coproducts of free algebras. We want to check that we have
binary coproducts of T -algebras (a, α) and (b, β). We have reflexive coequalizers

(T 2a, µTa) (Ta, µa) (a, α)
µa

Tα

Tηa
α

(T 2b, µTb) (Tb, µb) (b, β)
µb

Tβ

Tηb
β

so we get a new reflexive pair by taking coproducts of the free algebras

(T 2a, µTa) + (T 2b, µTb) (Ta, µa) + (Tb, µb)
µa+µb

Tα+Tβ

Tηa+Tηb

From the corollary, T preserves sifted colimits, hence T -Alg has reflexive coequalizers. Then
the diagram above has a coequalizer, which is a coproduct of (a, α) and (b, β).

Remark 2.2.12. 1. This shows that Ab, Grp, Rng, etc. are cocomplete.

2. We only used the fact that T preserves sifted colimits, hence a monad on a cocomplete
category C preserving sifted colimits has a cocomplete category of algebras. In fact, we
only need that reflexive coequalizers and filtered colimits exist in T -Alg.

2.3 Dense generators

The aim of this section is to prove the theorem about finitary endofunctors of Set. We want
to identify “nice” generating subcategories like Setfin → Set.

Definition 2.3.1. Let K : A→ C be the inclusion of a full subcategory or, equivalently, a fully
faithful functor. We define the restricted Yoneda functor K̃ : C → [Aop,Set] as the functor
sending c ∈ C to C(K−, c).

The canonical cocone on the domain functor

dom: (K ↓ c)→ C

(a, ϕ) 7→ Ka

has components ϕ : dom(a, ϕ) = Ka
ϕ−→ c.

Definition 2.3.2. A colimit of a diagram D : I→ C is K-absolute if it is preserved by K̃ : C→
[Aop,Set].

Definition 2.3.3. A full subcategory/fully faithful functor K : A → C is called dense if K̃ is
fully faithful.

Theorem 2.3.4 (Kan). Let C be a locally small cocomplete category, A a small category and
K : A→ C a functor. Then, K̃ has a left adjoint given by LanよK : [A,Set]→ C such that the
diagram

A [Aop,Set]

C

よ

K LanよK

commutes up to isomorphism.
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Proof. We have LanよK(F ) = colim
(よ↓F )

Ka, hence

C(LanよK(F ), c) ∼= lim
(よ↓F )

C(Ka, c)

Yoneda∼= lim
(よ↓F )

[Aop,Set] (A(−, a),C(K−, c))

∼= [Aop,Set]

(
colim
(よ↓F )

A(−, a),C(K−, c)
)

∼= [Aop,Set] (F,C(K−, c)).

Notice that for F =よa the category (よ ↓ F ) has a terminal object (a, ida), thus LanよK(よa) ∼=
Ka naturally.

Theorem 2.3.5. Let C be a locally small cocomplete category, A a small category and K : A→
C a fully faithful functor. The following conditions are equivalent:

1. K̃ is fully faithful;

2. for every c ∈ C, the canonical cocone on dom: (K ↓ c) → C exhibits c as colimit of the
diagram dom: (K ↓ c)→ C;

3. every object c ∈ C is a K-absolute colimit of a diagram of the form I
D−→ A

K−→ C;

4. there exists some family of diagrams Di : Ii → C which have K-absolute colimits and C is
the closure1 of A under the colimits of Di;

5. the counit of LanよK a K̃ is an isomorphism.

Proof. (1) =⇒ (2) If K̃ is fully faithful, it suffices to check that the image of the canonical
cocone under K̃ is a colimit. Since K is fully faithful, this image is precisely the diagram
A(−, a) ∼= C(K−,Ka)⇒ C(K−, c). Then

colim
(K↓c)

K̃ dom = colim
(よ↓C(K−,c))

A(−, a) ∼= C(K−, c).

This proves (2) and the fact that the colimit of (K ↓ c) → C is preserved by K̃ : C →
[Aop,Set].

(2) =⇒ (3) As we just observed, colim
(K↓c)

dom is K̃-absolute and dom: (K ↓ c) → C factors

through A.

(3) =⇒ (4) Clear.

(4) =⇒ (5) Let B be full subcategory spanned by the elements b ∈ C such that εb : LanよK(K̃b)→
b is an isomorphism. It is closed under K-absolute colimits since they are preserved by
K̃ (by definition), by the left adjoint LanよK and by idC. It remains to check that

the counit at Ka ∈ C is an isomorphism. But K̃Ka = C(K−,Ka) ∼= A(−, a), so
LanよK(K̃Ka) = LanよK(よa) ∼= Ka.

1That is, the smallest full subcategory B of C which contains A and which satisfies the following

if some diagram Di : Ii → C factors through B, then colimDi ∈ B

is C itself.
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(5) =⇒ (1) Any right adjoint whose counit is an isomorphism is fully faithful.

Remark 2.3.6. Notice that the first four points of the Theorem 2.3.5 are equivalent even when
C is not cocomplete. In fact, we also have the implication (4) =⇒ (1) without assumptions on
the cocompleteness of C.

Proof. We give an alternative proof which holds without the cocompleteness hypothesis of the
implication (4) =⇒ (1).

Consider the full subcategory B of C with objects

{b ∈ C | K̃Ka,b : C(Ka, b)→ [Aop,Set] (K̃Ka, K̃b) is bijective ∀a ∈ A}

Since K̃Ka = A(−, a), by Yoneda, the target is given by eva ◦ K̃(b). Therefore it preserves
K-absolute colimits. The domain is also equal to eva ◦ K̃(b), by definition. Hence it preserves
K-absolute colimits and contains Ka′ for every a′, therefore B = C. Consider now

B′ = {b′ | C(b′, b)
K̃−→ [Aop,Set] (K̃b′, K̃b) is bijective}

This is closed under all K-absolute colimits and contains Ka by the above argument, hence it
is all of C.

Definition 2.3.7. A fully faithful functor K : A→ C is dense if K̃ is fully faithful. A collection
of diagrams {Dj : Ij → C} such that C is the closure of A under colimits of Dj and the colimDj

are K-absolute is a density presentation.

Remark 2.3.8. The definition of density makes sense for arbitrary K, but the implication
(4) =⇒ (1) does not work in general.

Example 2.3.9. 1. よ : A→ [Aop,Set] is dense: we have

よ̃(G) = [Aop,Set] (よ−, G)
Yoneda∼= G,

thus よ̃ ∼= id preserves all colimits. The colimits indexed by the slices (よ ↓ F ) give a
density presentation.

2. K : Setfin ↪→ Set is dense: S finite implies that Set(S,−) preserves sifted, hence filtered,
colimits. Filtered (and sifted) colimits are K-absolute and a density presentation for K
can be found once one writes an arbitrary set as a union of its finite subset.

3. K : {∗} → Set is dense: K̃ : Set→ [∗,Set] ∼= Set, S 7→ Set(∗, S) ∼= S, hence we find that
K̃ preserves all colimits. We can use coproducts to get a density presentation.

4. K : {k} → Vectk is not dense even though every vector space is a coproduct of copies of
k.

Definition 2.3.10. Given any functor F : A → D, we can talk about the restricted Yoneda
embedding F̃ : D→ [Aop,Set], sending d ∈ D to D(F−, d).

Proposition 2.3.11. Let K : A → C be fully faithful and F : A → D any functor. Suppose
there exists L : C → D and bijections D(Lc, d) → [Aop,Set] (K̃c, F̃ d) natural both in c and d.
Then there is an isomorphism η : F

∼
=⇒ LK exibiting L as left Kan extension of F along K.
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Proof. The presheaf C(K−, c) is the colimit of the canonical cocone on (よ ↓ C(K−, c)). By
Yoneda, this is equivalent to (K ↓ c) with objects (a ∈ A, ϕ : Ka → c) and the evident
morphisms. If c ∼= Ka, this has (a, ida) as terminal object, in which case the colimit is
C(K−,Ka) ∼= A(−, a). Moreover, the formula above in this case gives

D(LKa, d) ∼= [Aop,Set](K̃Ka, F̃ d) ∼= [Aop,Set] (A(−, a),D(F−, d)) ∼= D(Fa, d).

This shows that LK ∼= F naturally. Then Lc = colim
(K↓c)

Fa, which is the classical formula for left

Kan extensions.

Definition 2.3.12. Any such Kan extension is called pointwise.

Theorem 2.3.13. Let K : A → C be a fully faithful dense functor with density presentation
{Dj : Ij → C}j∈J. Let D be a locally small category, F : A → D a functor and assume that
D has colimits of shape Ij for all j ∈ J. Then the pointwise left Kan extension of F along K
exists. In particular, the unit F ⇒ LanK F ◦K is an isomorphism.

Proof. We want a L as above, that is such that D(Lc, d) ∼= [Aop,Set] (K̃c, F̃ d) naturally in c, d.
This simply says that for all c ∈ C the functor [Aop,Set] (K̃c, F̃−) : D→ Set is representable.
Take B := {c ∈ C | [Aop,Set] (K̃c, F̃−) is representable}. If c = Ka, then K̃c = C(K−,Ka) ∼=
A(−, a), therefore

[Aop,Set] (K̃Ka, F̃ d) ∼= [Aop,Set] (A(−, a), F̃ d)
Yoneda∼= F̃ d(a)
∼= D(Fa, d),

hence it is represented by Fa and Ka ∈ B. Furthermore, B is closed under K̃-absolute colimits
of shape Ij , thus, letting D : Ij → B be a diagram such that colimIj D exists in C and is

preserved by K̃, we claim that colimIj D ∈ B.

[Aop,Set] (K̃ colim
Ij

D, F̃d) ∼= [Aop,Set] (colim
Ij

K̃D, F̃ d)

∼= lim
Ij

[Aop,Set] (K̃D, F̃ d)

∼= lim
Ij

D(LD, d)

∼= D(colim
Ij

LD, d),

therefore B = C and we get the functor L = LanK F .

Lemma 2.3.14. Under the same conditions as before, pointwise Kan extensions along K pre-
serve K-absolute colimits.

Proof. By definition, D(LanK F (c), d) ∼= [Aop,Set] (K̃c, F̃ d). Let colim
I

D be K-absolute. Then
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the claim is shown by the following chain of isomorphisms.

D(LanK F (colim
I

D), d) ∼= [Aop,Set] (K̃ colim
I

D, F̃d)

∼= [Aop,Set] (colim
I

K̃D, F̃ d)

∼= lim
I

[Aop,Set] (K̃D, F̃ d)

∼= lim
I

D(LanK F (D), d)

∼= D(colim
I

LanK F (D), d).

Theorem 2.3.15. Let K : A → C be fully faithful, Φ a class of colimit shapes and assume
there exists a density presentation for K with colimits of shape Ij ∈ Φ. Let D be a category
with colimits of shape Φ. We write Φ -Cocts(C,D) for the category of functors C → D which
preserve Φ-colimits. If all colimits of shape Φ are K-absolute, then

[A,D] Φ -Cocts(C,D)

LanK

K∗
⊥

is an equivalence.

Proof. The existence of LanK is guaranteed by the fact that D has Φ-colimits and K has
density presentation with colimits of shape Ij ∈ Φ. By definition, LanK is left adjoint to
K∗ : [C,D]→ [A,D] and by the lemma it lands in Φ -Cocts(C,D). Then LanK is a left adjoint
to the restriction. The unit is an isomorphism since LanK F is pointwise, so it suffice to check
that K∗ is conservative. Let G,H : C→ D be Φ-cocts, α : G⇒ H natural transformation such
that αK is an isomorphism. Then, {c | αc is an isomorphism} contains Ka for every a and is
closed under colimits of density presentations, hence α is an isomorphism.

Corollary 2.3.16. For K : Setfin ↪→ Set, we get that

[Setfin,Set] [Set,Set]fin

LanK

K∗
⊥

is an equivalence.

Definition 2.3.17. Let Φ be a class of colimit shapes and A be a small category. We write
Φ(A) for the closure of the representable presheaves in [Aop,Set] under Φ-colimits. We have a
functor よ : A→ Φ(A).

Remark 2.3.18. By construction, there exists a density presentation for よ : A → Φ(A) con-

sisting of Φ-colimits. This follows from よ̃ : Φ(A)→ [Aop,Set] being simply the inclusion.

Theorem 2.3.19. Let Φ be a class of small colimit shapes, A a small category. Then A
よ−→ Φ(A)

is the free cocompletion of A under Φ-colimits, that is

[A,C] Φ -Cocts(Φ(A),C)

Lanよ

よ
∗
⊥

is an equivalence for every Φ-cocomplete C. In particular, if Φ is the class of all small colimit
shapes, then Φ(A) = [Aop,Set] is the free cocompletion of A. In this case, every L ∼= Lanよ F ∈
Cocts([Aop,Set] ,C) has a right adjoint, that is Lanよ F a F̃ .
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Proof. Since よ : A → Φ(A) has density presentation consisting of Φ-colimits, the two equiva-
lences follow from the previous theorem. To exhibit the right adjoint of L, we see that

C(Lanよ F (G), c) ∼= [Aop,Set] (よ̃(G), F̃ c) ∼= [Aop,Set] (G, F̃ c)

since Lanよ F is pointwise.

Example 2.3.20. Let ∆ be the category of finite non-empty ordinals [0], [1], . . . and order
preserving maps. We have a functor ∆• : ∆ → Top, sending [n] to the standard (geometric)
n-simplex ∆n so we get and adjunction Lanよ∆• : [Aop,Set] � Top : ∆∗•. Lanよ∆• is called
the geometric realization and ∆∗• =: Sing(−) is called the singular complex. In pictures:

[2 ]

1

0 2

[3 ]

1

0 3

2

...

[∆op,Set] is called the category of simplicial sets and it is denoted by sSet. Lanよ∆• is denoted
by | · |.

2.4 Locally presentable categories

From now on we fix a regular cardinal κ2.

Definition 2.4.1. A category C is κ-filtered if any diagram in C of size < κ has a cocone.
Equivalently, if it is non-empty and for any set of objects {xi} of cardinality < κ there exists
x ∈ C and xi → x such that

xi xj x
<κ

...

is coequalizing. If κ = ℵ0 a κ-filtered category is just a filtered one.

Definition 2.4.2. An object c ∈ C is called κ-presentable if C(c,−) preserves κ-filtered colimits.
If κ = ℵ0, c is called finitely presentable.

Definition 2.4.3. A category A is called κ-accessible if there exists a small subcategory A0 of
κ-presentable objects such that A is the closure of A0 under κ-filtered colimits. The category
A is called locally κ-presentable if it is κ-accessible and cocomplete.

2Namely, a union of < κ sets of cardinality < κ has cardinality < κ.
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Example 2.4.4. Take A = Set, A0 = Setfin and S ∈ Setfin. Then

Set(S,−) =
∏

|S| finite

Set(∗,−)

preserves sifted, hence filtered, colimits, thus Set is locally finitely presentable.

Remark 2.4.5. For A0 as in the definition, K : A0 → A the inclusion, we find that κ-filtered
colimits are K-absolute.

A
K̃−−→ [Aop

0 ,Set]
eva−−→ Set

a′ 7−→ A(K−, a′) 7−→ A(a, a′)

so that A0
K
↪−→ A has density presentation consisting of κ-filtered colimits. Thus K̃ : A →

[Aop
0 ,Set] is fully faithful and preserves κ-filtered colimits.

Definition 2.4.6. A functor is κ-accessible if it commutes with κ-filtered colimits. We write
[A,C]κ for the subcategory of κ-accessible functors ([A,C]fin if κ = ℵ0).

It follows that

[A0,C] [A,C]κ

LanK

K∗
⊥

if A, A0 are as above and C has κ-filtered colimits.

Remark 2.4.7. A κ-accessible category A is locally κ-presentable if and only if A
K̃−→ [Aop

0 ,Set]
has a left adjoint for any choice of A0 ⊆ A that defines it as the closure under κ-filtered colimits.

Definition 2.4.8. A monad (T, µ, η) is said to have rank κ if T is a κ-accessible endofunctor.

Definition 2.4.9. A category A is called accessible (resp. locally presentable) if it is κ-accessible
(resp. locally κ-presentable) for some regular cardinal κ. A functor is accessible if it is κ-
accessible for some κ. A monad has rank if it is accessible.

Our next goal is to prove that if (T, µ, η) is an accessible monad on a locally presentable
category, then T -Alg is locally presentable.

Proposition 2.4.10. Let A be κ-accessible, A0 ⊆ A be the small subcategory of κ-presentable
objects such that A is the closure of A0 under κ-filtered colimits, and (T, µ, η) be a monad of
rank κ on A. Then B = {(Ta0, µa0) | a0 ∈ A0} is a dense generator of T -Alg.

Proof. First note that (Ta0, µa0) is κ-presentable. Indeed, we have T -Alg((Ta0, µa0),−) ∼=
A(a0, U

T−) and UT creates all colimits that T preserves, in particular κ-filtered ones. Hence,
UT preserves κ-filtered colimits and for this reason (Ta0, µa0) is κ-presentable. Let Φ1 be the
class of κ-filtered diagrams. Writing K : B → T -Alg for the inclusion, we have just shown
that Φ1-colimits are K-absolute. Note that the closure of B under Φ1 contains all free algebras
(Ta, µa) since A is the closure of A0 under Φ1-colimits. Let Φ2 be the class of diagrams

(T 2a, µTa) (Ta, µa) for all (a, α) ∈ T -Alg. The closure under Φ1 ∪ Φ2 is clearly all of

T -Alg, so we just need to show that Φ2-colimits are K-absolute, that is preserved by each
T -Alg((Ta0, µa0),−). Since T -Alg((Ta0, µa0),−) ∼= A(a0, U

T−) and UT sends a coequalizer in
question to a split coequalizer, the colimit is indeed K-absolute.
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Example 2.4.11. Finite free groups, abelian groups, commutative rings etc. form dense gen-
erators of Grp, Ab, CRng etc.

Recall that the category of T -algebras of a finitary monad T : Set→ Set is cocomplete. We
would like to know that T -Alg is locally finitely presentable. This result can be proved using
the following fact (which is in turn an easy consequence of the result about the commutativity
of κ-filtered colimits with κ-small limits in Set):

κ-presentable objects are closed under κ-small colimits.

Proposition 2.4.12. Let C be a locally small cocomplete category which has a small dense
subcategory consisting of κ-presentable objects. Then C is locally κ-presentable.

Proof. Let A′ be the closure of A under κ-small colimits. This is constructed as follows: A0 = A.
For any ordinal i we set

Ai+1 = {colimits of κ-small diagrams in Ai}

and for a limit-ordinal λ we set Aλ =
⋃
µ<λAµ. This terminates when λ = κ, so Aκ is the

colimit closure and thus small. From the above mentioned fact we know that A′ consists of κ-
presentable objects. Since it contains A, the inclusion K : A′ → C is dense. If A′ is dense, then
each object in C is a colimit of (K ↓ c)→ C which is a κ-filtered diagram by construction.

Corollary 2.4.13. For each finitary monad T on Set, the category T -Alg is locally finitely
presentable. Moreover if T is a monad of rank κ on a locally κ-presentable category, then T -Alg
is locally κ-presentable if and only if it is cocomplete.

Theorem 2.4.14. Let I be a filtered category and

X : I→ Set, i 7→ Xi

a diagram and (Xi
ni−→ X)i a cocone. Then (Xi → X)i is a colimit cocone if and only if

i) For all x ∈ X there exists an i ∈ I and an x̃ ∈ Xi such that x = ni(x̃).

ii) If x, y ∈ Xi satisfy ni(x) = ni(y), then there is some φ : i → j such that Xφ(x) = Xφ(y).
(Informally: “all equalities that hold in X hold in some Xj .”)

Proof. Given any other cocone λi : Xi → Y we define f : X → Y as x 7→ λi(x̃) for any, with
x̃ constructed as in (i). This is well defined by (ii) and filteredness. It only remains to show
that there exists such a cocone. Take X = (

∐
Xi)/ ∼ with (x, i) ∼ (y, j) if there is some some

diagram i
φ−→ k

ψ←− j in I with Xφ(x) = Xψ(y).

Corollary 2.4.15. In Set filtered colimits commute with finite limits and κ-filtered colimits
commute with κ-small limits.

Proof. Check that a levelwise equalizer of cones satisfying i) and ii) above still satisfies i) and
ii). This can be done by chasing through the following diagram

Xi Yi Zi

X Y Z

For < κ-fold products, we use κ-filteredness to extend ii) to any set of pairs of size < κ. Then
check that the product of cones satisfying i) and ii) of size < κ still satisfies i) and ii).



2.4. Locally presentable categories 26

Corollary 2.4.16. In any category, κ-presentable objects are closed under κ-small colimits.

Proof. Let C : I→ C be a κ-filtered diagram and D : J→ C a κ-small diagram of κ-presentable
objects DJ .

C(colim
J

Dj , colim
I

Ci) ∼= lim
J

C(Dj , colim
I

Ci)

∼= lim
J

colim
I

C(Dj , Ci)

Previous corollary ∼= colim
I

lim
J

C(Dj , Ci)

∼= colim
I

C(colim
J

Dj , Ci).

Proposition 2.4.17. Each object in a locally presentable category is λ-presentable for λ� 0.

Proof. Let C be locally κ-presentable, choose a small dense subcategory A of κ-presentable
objects. So, any object c ∈ C we have is a colimit of dom: (K ↓ c) → C, where K is the
inclusion A→ C. Choose λ such that λ > κ and λ > |Arr(K ↓ c)|.

The characterization of filtered colimits in Set gives the following characterization of finitely
presentable objects: a is finitely presentable if for all filtered colimits ki : ci → c in C and all
f : a→ c there exists a factorization

ci

a c

kif ′

f

and any two such lifts f ′, f” satisfying ki · f ′ = ki · f” become equal after composing with some
cφ : ci → cj .

Corollary 2.4.18. Let C be a locally κ-presentable category. We have that κ-filtered colimits
commute with κ-small limits in C.

Proof. Choose a small dense subcategory A ⊂ C of κ-presentable objects. The inclusion
K : A→ C induces a fully faithful functor K̃ : C→ [Aop,Set] with left adjoint LanよK, hence
it preserves all limits. This implies that C is complete as a reflective subcategory of the complete
category [Aop,Set]3. Moreover, K̃ preserves κ-filtered colimits, given that eva ◦ K̃ = C(Ka,−)
hence this reduces the problem to limits and κ-filtered colimits in [Aop,Set], where both are
computed levelwise.

Proposition 2.4.19. Let C, D be locally κ-presentable, λ ≥ κ a regular cardinal. Then the
category [C,D]λ of λ-accessible functors and natural transformations is locally small, cocomplete
and the inclusion [C,D]λ → [C,D] preserves colimits. In fact, [C,D]λ is locally presentable.

Proof. The category Cλ of λ-presentable objects in C is essentially small and each (Cλ ↓ c) is
λ-filtered, so Cλ ↪→ C is dense with density presentation consisting of λ-filtered colimits. From
a general fact, the left adjoint of

[Cλ,D] [C,D]

LanK

K∗
⊥

3Note, that one also could define a locally κ-presentable category to be a reflexive subcategory of a presheaf
category, such that the inclusion commutes with κ-filtered colimits



2.5. Cocompleteness of categories of algebras 27

induces an equivalence onto its essential image, which is precisely [C,D]λ. In other words,
[C,D]λ

∼= [Cλ,D] is locally small and the inclusion preserves all colimits. Furthermore, [C,D]λ
is locally presentable since [Cλ,D] is locally κ-presentable.

Corollary 2.4.20. The category of accessible functors [C,D]acc is closed under small colimits
in [C,D].

Proof. This is clear, since [C,D]acc =
⋃
λ

[C,D]λ.

The following theorem about dense functors has already been secretly used previously. Let
us prove it once and for all.

Theorem 2.4.21. Consider two small categories A and A′ and two fully faithful functors

A
P−→ A′

J−→ C. If the composite K = JP is dense, then both P and J are dense.

Proof. It is immediate for P , since P̃ = K̃|A′ . Let us show J is dense. Note that we have

C(Jd, c)
J̃P−−−−−→
∼

[Aop,Set] (C(JP−, Jd),C(JP−, c))

(JP−,d)∗

−−−−−→
∼

[Aop,Set] (A′(P−, d),C(JP−, c))

where the first isomorphism holds because JP is dense and the second one because J is fully
faithful. Consequently J is the pointwise left Kan extension of JP along P :

A A′

C

P

JP J

∼

Since the left Kan extension is pointwise, it is preserved by any cocontinuous functor out of C.
In particular, for every c ∈ C we can apply C(−, c) : C→ Setop and we get that

Aop (A′)op

Set

P op

C(JP−, c) C(J−, c)

∼

is a right Kan extension for every c ∈ C. In particular, each α : C(J−, c)⇒ C(J−, c′) is uniquely
given by αP op : C(JP−, c)⇒ C(JP−, c′). By density of JP = K, αP op must be of the form g∗
for a unique g : c→ c′. By uniqueness, α = C(J−, g), hence J̃ is full. Moreover, J̃P is equal to

the composition C
J̃−−→
[
(A′)op,Set

] (P op)∗−−−−→ [Aop,Set] and then J̃ is also faithful.

2.5 Cocompleteness of categories of algebras

The goal of this section is to show that, if T is a monad on a locally presentable category C

and T has rank (it is accessible), then T -Alg is cocomplete and thus locally presentable (the
last bit is a consequence of a previous result).

There exists a single construction which admits the following as special cases:

• free monad on an endofunctor,



2.5. Cocompleteness of categories of algebras 28

• free monad on a pointed endofunctor,

• free monoid on an object in a monoidal category,

• orthogonal factorization system generated by a set of morphisms,

• reflectiveness of a small orthogonality class,

• cocompletion of T -Alg for suitable monads T ,

• existence of colimits of diagrams of accessible monads.

This was observed by G. M. Kelly in [Kel80], which is “hard to read” but simplifies greatly in
the context of locally presentable categories.

Throughout this section we will work with locally presentable categories and accessible func-
tors.

Kelly’s main observation is that all above constructions can be reduced to the case of algebras
for a well-pointed endofunctor.

Definition 2.5.1. Let S : C → C be a functor. We call S pointed if there exists σ : idC ⇒ S.
The pair (S, σ) is well-pointed4 if Sσ = σS : S ⇒ S2.

Definition 2.5.2. Given a pointed endofunctor (S, σ), a (S, σ)-algebra is a pair (a, α), where
α : Sa→ a is a morphism in C s.t. α · σa = ida (basically a monad without multiplication gives
an example). A morphism of algebras (a, α)→ (b, β) is a morphism f : a→ b in C such that

Sa Sb

a b

α

Sf

β

f

commutes. We write (S, σ) -Alg for the resulting category and US : (S, σ) -Alg → C for the
forgetful functor.

Lemma 2.5.3. If (S, σ) is a well-pointed endofunctor, then there exists at most one algebra
structure for any object and it exists if and only if σa is invertible, in which case α = σ−1

a .
Moreover, US : (S, σ) -Alg → C is fully faithful. In other words, (S, σ) -Alg is isomorphic to the
full subcategory of C given by {a ∈ C | σa is invertible}.

Proof. For fixed (a, α) ∈ (S, σ) -Alg, the diagram

Sa S2a

a Sa

α

σSa

Sα

σa

commutes by the naturality of σ. Since S is well-pointed, this implies σa · α = Sα · σSa =
Sα · ·Sσa = S(α · σa) = S ida = idSa, therefore α = σ−1

a . On the other hand, if σa is invertible
then (a, σ−1

a ) is a (S, σ)-algebra.

4Note that, as soon as one defines a monad to be idempotent if the multiplication is an isomorphism, being
idempotent is equivalent to being well-pointed.
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If f : a→ b is any morphism and both σa and σb are invertible, then

Sa Sb

a b

σ−1
a

Sf

σ−1
b

f

commutes by naturality of σ, so US is full (being faithful by construction). It follows that
US : (S, σ) -Alg→ {a ∈ C | σa is invertible} is bijective on objects and fully faithful, so it is an
isomorphism.

Lemma 2.5.4. If (S, σ) is a pointed endofunctor, then US : (S, σ) -Alg → C is monadic if and
only if it has a left adjoint.

Proof. US is conservative and creates all colimits preserved by S. In particular, it preserves
coequalizers of US-split pairs.

Definition 2.5.5. For an endofunctor F : C → C (or a pointed endofunctor (S, σ)), we say
that the algebraically free monad on F (respectively (S, σ)) exists if UF : F -Alg → C (or
US : (S, σ) -Alg→ C) has a left adjoint.

We will denote by Ord the category of ordinals. Furthermore, using the well-ordering prin-
ciple, we can associate an ordinal to any cardinal. Note that, given a regular cardinal κ, its
associated ordinal (which also will be denoted by κ) will be a limit ordinal.

Theorem 2.5.6. Let C be a category with colimits of chains (that is the domain of the
diagram is an ordinal). Let (S, σ) be a well-pointed endofunctor such that S preserves κ-
filtered colimits. Then, the algebraically free monad on (S, σ) exists. In particular, {c ∈
C | σc is an isomorphism} is a reflective subcategory.

Proof. For a given object c ∈ C we define a functor S•c : Ord → C by setting S0c := c, while
Sλ+1c := S(Sλc), with Sλc → Sλ+1c given by σSλc for λ ∈ Ord. Given a limit ordinal µ, we
set Sµc = colimλ<µ S

λc.
We claim that Sκc lies in (S, σ) -Alg, that is σSκc is an isomorphism. We will prove this by

constructing an inverse α : S(Sκc)→ Sκc.
Since S is κ-accessible, Sκ+1c = S(Sκc) = colimλ<κ S(Sλc). We construct a cocone on S(S•c)

by considering the maps lλ+1 : S(Sλc) = Sλ+1c→ Sκc exibiting Sκc as a colimit.

S(Sλc) S(Sλ+1c)

Sκc Sκc

Sσ
Sλc

=σ
Sλ+1c

lλ+1 lλ+2

Well pointedness gives us the upper equality and the diagram commutes, hence we get a cocone
culminating in Sκc, which will then factor uniquely through the cocone culminating in S(Sκc)
as α : S(Sκc)→ Sκc. By construction, the following diagram commutes and lµ+1 · σSµc = lµ by
the definition of the cocone.

Sµc S(Sµc)

Sκc S(Sκc) Sκc

σSµc

lµ
lµ+1

Slµ

σSκc α
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Passing to the colimit, this implies that α·σSκc = idSκc because the lµ on the left and therefore
lµ+1 · σSµc = lµ become identities, hence (Sκc, α) is indeed a (S, σ)-algebra.

We now claim that l0 : c → Sκc defines a reflection into the full subcategory given by B :=
{c ∈ C | σc is an isomorphism}. Firstly, we have shown that Sκc ∈ B, hence we only need
l∗0 : C(Sκc, b)→ C(c, b) to be a bijection for all b ∈ B.

Since representable functors C(−, b) send colimits to limits, this immediately reduces to the
following: given b ∈ B, c ∈ C, the map σ∗c : C(Sc, b)→ C(c, b) is a bijection.

Using well-pointedness, we can write the inverse to σ∗c as C(c, b)→ C(Sc, b), f 7→ σ−1
b ·Sf .

Theorem 2.5.7. Let C be a cocomplete category, F : C → C an endofunctor. The comma
category (F ↓ C) is cocomplete. Moreover, all colimits preserved by F are computed pointwise,
that is colimI(ai, bi, αi : Fai → bi) = (colimI ai, colimI bi, colimI αi : F (colimI ai)→ colimI bi).

Proof. Giving a diagram D : I → (F ↓ C) amounts to giving diagrams a• : I → C, b• : I → C

and a natural transformation α• : Fa• ⇒ b•.
Giving a cocone on this with vertex (c, d, γ : Fc → d) is equivalent to giving morphisms

colimI ai → c, colimI bi → c such that the diagram

Fai F (colimI ai) Fc

bi colimI bi d

γ

commutes foe all i.
Equivalently, we can give a morphism colimI ai → c and a morphism from the pushout p to

d making the following diagram commute.

colimI Fai F (colimI ai) Fc

colimI bi p d

colimI αi γ

We have then the colimit (colimI ai, p, F (colimI αi) → p) in (F ↓ C). In particular, if F
preserves this colimit, then the top map colimI Fai → F (colimI ai) is an isomorphism, in which
case we may take p = colimI bi and the identity as the map from colimI bi to p.

Proposition 2.5.8. If in the theorem above C is locally presentable and F is accessible, then
(F ↓ C) is locally presentable.

Proof. There exists a regular cardinal κ such that C is locally κ-presentable and F (Cλ) ⊂ Cκ,
with F λ-accessible and λ ≤ κ. We claim that the full subcategory A := {(a, b, α : Fa→ b) | a ∈
Cλ, b ∈ Cκ} is dense and consists of κ-presentable objects in (F ↓ C).

The fact that it consists of κ-presentable objects follows from the facts that κ-filtered colimits
in (F ↓ C) are computed pointwise.

To prove density, we want that for each (c, d, γ : Fc → d) the canonical cocone of (A ↓
(c, d, γ)) → (F ↓ C) exhibits (c, d, γ) as a colimit. In the arrow category C[1], Fc → d is a
colimit of all κ-presentable pairs c0, c1 ∈ Cλ with a morphism c0 → c1 such that there exists a
pair of morphisms making the diagram

c0 Fc

c1 d



2.6. Algebraically free Monads on a pointed Endofunctor 31

commute.
We need to check that the natural functor (A ↓ (c, d, γ))→ ((C[1])λ ↓ γ) is final.
Check for yourself that the category ((C[1])λ ↓ γ) we are considering is actually filtered and

specifically can always find a pair of morphisms completing the following commutative diagram,
where Fa→ b comes from A.

Fa

c0 Fc

b

c1 d

The codomains form a colimit diagram in C, hence we are left with checking that the domains
form a colimit diagram as well. To do this, we use the fact that (Cλ ↓ c)→ C has colimit c and
an argument similar to the previous one.

2.6 Algebraically free Monads on a pointed Endofunctor

Let T : C → C a κ-accessible endofunctor, with C cocomplete. As we have already shown,
the category (T ↓ C) is cocomplete and κ-filtered colimits in (T ↓ C) are computed objectwise.
Given a natural transformation α : T ′ ⇒ T , we get an adjunction

(T ′ ↓ C) (T ↓ C)

α!

α∗

⊥

where α∗(a, b, Ta
γ−→ b) = (a, b, T ′a

αa−→ Ta
γ−→ b) and α! is given by the pushout

T ′a b

Ta c

β

αa

γ

,

that is α!(a, b, β) = (Ta
γ−→ c). If T, T ′ are κ-accessible, then α∗ is κ-accessible. If we apply this

to the case T ′ = idC, α = τ : idC → T , then (idC ↓ C) = C[1] is the arrow category, and τ∗ sends

(a, b, Ta
γ−→ b) to a

αa−→ Ta
γ−→ b. Now use exercise 5.1.

Proposition 2.6.1. If

D C

F

U

⊥

is an adjunction, (S, σ) is a well-pointed endofunctor on D and C has pushouts, then

FU FSU

idC S′

FσU

ε

σ′
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defines a well-pointed endofunctor (S′, σ′) on C such that the square

(S′, σ′) -Alg, (S, σ) -Alg

C D

U

U

is a pullback.

Theorem 2.6.2. Let C be a cocomplete category, (T, τ) a pointed endofunctor on C with T
κ-accessible. Then (T, τ) -Alg is a reflective subcategory of (T ↓ C) and the algebraically free
monad on (T, τ) exists. In particular, by reflexiveness, (T, τ) -Alg is cocomplete.

Proof. Notice that the functor

(T, τ) -Alg→ (T ↓ C), (a, α) 7→ (a, a, Ta
α−→ a), f 7→ (f, f)

is fully faithful. It is clearly faithful, and if (f, g) : (a, a, α)→ (b, b, β) is a morphism in (T ↓ C),
then we have a commutative diagram

a Ta a

b Tb b

f

τa

Tf

α

g

τb β

Since (a, α) and (b, β) are algebras, we have β · τb = idb and α · τa = ida. It immediately follows
that f = g. Moreover, the essential image of this functor is

{(a, b, γ) ∈ (T ↓ C) | γ · τa is an isomorphism}

Apply the previous proposition to the pullback

(T, τ) -Alg Iso(C)

(T ↓ C) C[1]

(a, b, γ) γτa

τ∗

and the well-pointed endofunctor S : C[1] → C[1] given by S(c → d) = idd with (S, σ) -Alg =
Iso(C). We obtain (S′, σ′) such that (T, τ) -Alg ∼= (S′, σ′) -Alg. Since the pushout from the
previous proposition consists of κ-accessible functors (here we use that τ∗ is κ-accessible), (S′, σ′)
is κ-accessible. It follows that (S′, σ′) -Alg is reflexive in (T ↓ C), as claimed.

Thus (T, τ) -Alg is cocomplete. Note that the forgetful functor UT : (T, τ) -Alg→ C factors as

(T, τ) -Alg (T ↓ C) C

(a, α) (a, a, α) a

dom

and (T, τ) -Alg→ C has a left adjoint. To show this, we only need to find a left adjoint to dom
which is given by c 7→ (c, T c, idTc).
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Theorem 2.6.3. Let C be a cocomplete category and F a κ-accessible endofunctor. The
category F -Alg is cocomplete and the algebraically free monad on F exists, that is the functor
UF : F -Alg→ C has a left adjoint.

Proof. Let T be the coproduct F + idC and τ : idC ⇒ F + idC the inclusion. Then (T, τ) -Alg ∼=
F -Alg is an isomorphism which is compatible with the forgetful functors.

For example, we can easily prove the following.

Proposition 2.6.4. Let C be a locally κ-presentable category and T : C → C κ-accessible.
Then (T ↓ C) is locally κ-presentable.

Proof. Consider the functor C×C
F−→ C×C, (a, b) 7→ (∅, Ta). Then F -Alg ∼= (T ↓ C) and UF is

κ-accessible. Since UF is monadic, the free objects on the κ-presentable objects form a dense
generating set consisting of κ-presentable objects in F -Alg ∼= (T ↓ C).

Remark 2.6.5. An analysis of the construction of (S′, σ′) in the proof of the previous theorem
shows that S′ : (T ↓ C)→ (T ↓ C) sends (a, b, α : Ta→ b) to (b, c, γ : Tb→ c) where

Ta T 2a Tb c
Tτa

τTa

Tα β
(1)

is a coequalizer diagram in C. Notice that β is a coequalizer of Tα · Tτa and Tα · τTa (see the
exercises for more details).

Proposition 2.6.6. Let (S, σ) be a well-pointed endofunctor on C and let L : C → C be a
functor. If π : S → L is a natural transformation such that πc : Sc → Lc is epic for all c ∈ C,
then (L, π ·σ) is a well-pointed endofunctor and (L, πσ) -Alg is equivalent to the full subcategory
of (S, σ) -Alg on objects (a, α) such that πa : Sa→ La is an isomorphism.

Proof. Exercise.

Now let (T, µ, η) be a monad on a cocomplete category C and assume T is κ-accessible.
We define an endofunctor L : (T ↓ C) → (T ↓ C) as follows: Given (a, b, α : Ta → b) we set
L(a, b, α) = (b, d, γ : Tb→ d) with γ defined by the following pushout in C.

T 2a Ta

Tb d

µa

Tα δ

γ

Using this construction we can finally prove the following.

Theorem 2.6.7. Let C be a complete category, (T, µ, η) a monad over C with T κ-accessible.
Then T -Alg is reflexive in (T ↓ C) and cocomplete.

Proof. Recall that (T, η) -Alg is reflexive in (T ↓ C) and we have a well-pointed endofunctor
given by S′ described in (1). Remember the functor L just defined.

Since µa has a section Tηa, it is the coequalizer of ida and Tηa · µa. For that reason one also
could define γ to be given by the following coequalizer.

T 2a T 2a Tb d

Ta

µa

Tα γ

Tηa

(2)



2.7. Monads are monadic 34

Given that µa · Tηa = idTa, we have δ = δ · µa · Tηa = γ · Tα · Tηa. Moreover, γ coequalizes
Tα · Tηa and Tα · ηTa, hence there exists a unique π : c → d making the following diagram
commute.

Tb c

Tb d

β

π

γ

This defines a natural transformation (id, π) : S′(a, b, α) → L(a, b, α), where the components
are epimorphisms because γ is a coequalizer of the diagram in (1) and therefore an epimorphism.

We get then a well-pointed endofunctor (L, πσ′) over (T ↓ C) with (L, πσ′) -Alg equivalent
to the full subcategory of (S′, σ′) -Alg given by the objects b such that (idb, π) is an isomor-
phism. We also have an equivalence (T, η) -Alg → (S′, σ′) -Alg, (a, α) 7→ (a, a, α), hence we
get that (S′, σ′) -Alg is isomorphic to the full subcategory of (T, η) -Alg given by {(a, α) ∈
(T, η) -Alg | (ida, π) : S′(a, a, α)→ L(a, a, α) is an isomorphism}.

In this case, the coequalizer of (1) is actually α : Ta → a (we have a split given by ηa and
idTa), hence our π looks as follows.

Ta a

Ta d

α

π

γ

Having π invertible is then equivalent to α being the coequalizer of (2), where b = a. If it
is a coequalizer diagram, αµa = αTα, which implies that (a, α) is a T -algebra. Conversely, if
(a, α) is a T -algebra, then this is a split coequalizer in C. It follows that T -Alg is equivalent to
(L, πσ′) -Alg.
L is accessible since T is and κ-filtered colimits in (T ↓ C) are computed as in C, thus

(L, πσ′) -Alg → (T ↓ C) has a left adjoint and therefore T -Alg → (T ↓ C), (a, α) 7→ (a, a, α) is
fully faithful and has a left adjoint.

We have the following result as a consequence.

Theorem 2.6.8. Given a locally κ-presentable category C and a monad (T, µ, η) of rank κ,
T -Alg is locally κ-presentable.

Proof. We have shown that {(Ta, µa) | a ∈ Cκ} is a dense generating system of κ-presentable
objects, hence the claim follows from the fact that T -Alg is cocomplete.

2.7 Monads are monadic

Given an endofunctor F : C→ C, an algebraically free monad on F exists if UF : F -Alg→ C

has a left adjoint FF : C→ F -Alg. We write then T (F ) = (UFFF , UF εFF , η) for the resulting
monad. From Beck’s theorem, we know that J : F -Alg → T (F ) -Alg, (a, α) 7→ (UF (a, α) =
a, UF ε(a,α)) is an equivalence of categories. We also have a natural transformation ψ : F ⇒ T (F )

corresponding via adjunction to α : FUF ⇒ UF . This gives us a functor ψ∗ : T (F ) -Alg →
F -Alg, (a, α) 7→ (a, αψa) such that ψ∗J = idF -Alg. We have the following result.

Proposition 2.7.1. In the described situation, ψ∗ is an isomorphism of categories.

Proof. We still have to show that J is surjective on objects, which follows from the fact that
both UF and UT (F ) are isofibrations and the fact that two T (F )-algebras isomorphic via ida
are equal.
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Definition 2.7.2. A morphism of monads (T, µ, η)→ (T ′, µ′, η′) over a category C is a natural
transformation φ : T ⇒ T ′ making the following diagrams commute.

T 2 (T ′)2

T T ′

µ

φ2

µ′

φ

idC T

T ′

η

η′
φ

The first diagram is equivalent to equating the following 2-cells.

C

C C

T

µ

T

T

T ′

φ

=

C

C C

T

T ′

µ′

T

T ′

T ′

φ φ

Likewise, the second diagram amounts saying that the following two 2-cells are equal.

C C

idC

T

T ′

η

φ

= C C

idC

T ′

η′

We denote the category of monads over C by Mnd(C).

Proposition 2.7.3. The functor

Mnd(C)op → (CAT ↓ C)

(T, µ, η) 7→ (UF : T -Alg→ C)

φ 7→

(
φ∗ : T ′ -Alg→ T -Alg

(a, α) 7→ (a, α · φa)

)

is fully faithful.

Proof. Prove by yourself that this is a functor. Consider then two monads T , T ′ over C. Giving
a functor making the following diagram commute amounts to giving a T -action on UT

′
, that is

a natural transformation ρ : TUT
′ ⇒ UT

′
making the known diagrams commute.

T ′ -Alg T -Alg

C
UT
′ UT

Using the adjunction F T
′ a UT

′
, this corresponds to a unique natural transformation T ⇒

UT
′
F T

′
= T ′. Notice that the T -action axioms for ρ correspond precisely to axioms for mor-

phisms of monads, hence we are done.
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Proposition 2.7.4 (Algebraically free monads are free). Let F : C→ C be an endofunctor such
that the algebraically free monad T (F ) exists. Then, for every monad T over C, the natural
transformation ψ : F ⇒ T (F ) induces a bijection ψ∗ : Mnd(C)→ [C,C](F, T ).

Proof. Consider the diagram

Mnd(C)op(T (F ), T )


C

T -Alg T (F ) -Alg


[C,C]op(F, T )


C

T -Alg F -Alg

UT UF



β : F ⇒ T
T -Alg −→ F -Alg

(a, α) 7→ (a, αβa)

∼=

ψ∗ ∼= compose with ψ∗ : T (F ) -Alg
∼−→F -Alg

which commutes by Yoneda. We want to prove that the horizontal arrows and the one on the
right are bijective, which will give us the thesis. The top map is a bijection by the previous
proposition and the one on the right is a bijection given by composing with ψ∗ : T (F ) -Alg

∼−→
F -Alg.

Notice that giving the following commutative diagram amounts to giving a natural transfor-
mation ρ : FG⇒ G without requiring any additional property.

A F -Alg

C

G UF

Here the natural transformations FUT ⇒ UT correspond bijectively to natural transformations
F ⇒ UTF T = T by adjunction, hence the bottom map is bijective as well.

Theorem 2.7.5. Let C be a locally κ-presentable category. We write Mndκ(C) for the full
subcategory of Mnd(C) given by κ-accessible monads. Then, the forgeful functor U : Mndκ(C)→
[C,C]κ is monadic and κ-accessible. In particular, Mndκ(C) is locally κ-presentable.

Proof. We already have seen that, given a κ-accessible F , the algebraically free monad T (F )
exists and is κ-accessible. Now, since φ : F ⇒ T (F ) is a universal morphism to a monad, the
functor T (−) : [C,C]κ → Mndκ(C) is left adjoint to U . It is also easy to see that U is conservative:
indeed, the inverse of a natural isomorphism, which is a morphism of monads, is a morphism of
monads again. It remains to show that U creates coequalizers of U -split reflexive pairs. Note
first that for any F ∈ [C,C]κ both pre and post-composition with F preserve coequalizers of
such pairs. In particular those are preserved by the functors [C,C]κ → [C,C]κ given by the
assignments F 7→ F ◦ F and F 7→ F ◦ F ◦ F . Now for a coequalizer

UT1 UT2 T ′
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of such a U -split reflexive pair, the diagram

UT1 ◦ UT1 UT2 ◦ UT2 T ′ ◦ T ′

is coequalizer diagram as well. So we get unique natural transformation µ′ : T ′ ◦T ′ ⇒ T ′. Using
the same argument, one can identify T ′ ◦ T ′ ◦ T ′ as a coequalizer and verify the associativity.
Also the unit η : id ⇒ T ′ can be constructed this way, such that the unit law holds. Thus we
have constructed a coequalizer in Mndκ(C) and U is monadic.

To get the second claim, it remains to show that U preserves κ-filtered colimits. Note again,
that for any F ∈ [C,C]κ pre-composition with F preserves all colimits, since those are computed
point wise, and post-composition preserves κ-filtered colimits, since F is κ-accessible. Thus,
since κ-filtered colimits are sifted, the functor [C,C]κ × [C,C]κ → [C,C]κ given by composition
preserves them, hence we conclude that the functors given by the assignments F 7→ F ◦ F and
F 7→ F ◦ F ◦ F preserve κ-filtered colimits and use the same arguments as above to see that U
creates κ-filtered colimits.

Proposition 2.7.6. Let C be locally κ-presentable. Then the functor

(−) -Alg : Mndκ(C)op → (CAT ↓ C)

preserves limits. That is, it sends colimits in Mndκ(C) to limits.

The following proof uses a generalisation of the endomorphism monad 〈b, b〉 on an object
b ∈ C, which was discussed in the exercise class. We will prove the details in use later, but give
an idea why the statement holds.

Proof. Recall that this endomorphism monad was given by Ranb b : C → C. Similarly, given
tow objects a, b ∈ C, one can construct a monad 〈a, b〉 given by the right Kan extension of b
along a.

C

∗

C

a

b

Furthermore a morphism f : a → b gives natural transformations 〈a, f〉 : 〈a, a〉 → 〈a, b〉 and
〈f, b〉 : 〈b, b〉 → 〈a, b〉. Now, just by unveiling the definitions, one checks that giving a morphism
of monads T ⇒ 〈a, a〉 is equivalent to giving a T -algebra structure on a. Moreover, the pullback

〈f, f〉 〈b, b〉

〈a, a〉 〈a, b〉

induced by a morphism f : a → b also gives a monad such that, for fixed T -algebra structures
T ⇒ 〈a, a〉 and T ⇒ 〈b, b〉, there exists a morphism of monads T ⇒ 〈f, f〉 if and only if f is a
morphism of T -algebras. Now we claim there also exist κ-accessible monads 〈a, a〉κ and 〈f, f〉κ
having the property that for any κ-accessible monad T there is a natural isomorphism

Mndκ(C)(T, 〈a, a〉κ) ∼= Mnd(C)(T, 〈a, a〉)

(similarly for 〈f, f〉κ). The construction of those will be given later in the lecture. Unraveling
the constructions given above, one sees that giving an object in (colimI Ti) -Alg is equivalent
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to giving a compatible system of Ti-algebra structures on a fixed object a ∈ C. This shows
(colimI Ti) -Alg ∼= limI(Ti -Alg) in (CAT ↓ C).

Now we can use this proposition to construct monads via presentations.

Example 2.7.7. Let E be a locally presentable cartesian closed category, that is there is a
product functor ×X : E → E which has a right adjoint for all X ∈ E. Now we start with the
endofunctor F1 : E→ E given by the assignment X 7→ X ×X +X. So the category of F1 -Alg
is given by the following data

T (F1) -Alg ∼= F1 -Alg = { (X,m, e) : m : X ×X → X, e : ∗ → X }

satisfying no axioms. Furthermore we take another endofunctor F2 : E → E given by X 7→
X ×X ×X +X +X and obtain the data

T (F2) -Alg ∼= F2 -Alg = { (X, f1, f2, f3) : f1 : X ×X ×X → X, f2, f3 : X → X }

Note that F1 and F2 both are κ-accessible by the usual sifted colimit argument, thus the
algebraically free monads T (F1) and T (F2) exist and are κ-accessible. We now define two
functors

F1 -Alg F2 -Alg
G1

G2

by the formulas

G1(X,m, e) = (X,m ◦m×X,m ◦ e×X,m ◦X × e)
G2(X,m, e) = (X,m ◦X ×m, idX , idX)

By fullness and faithfulness of ()-Alg, we get monad morphisms ϕ1, ϕ2 : T (F2)→ T (F1), inducing
G1 and G2 up to isomorphism (G1 = ϕ∗1, G2 = ϕ∗2). Now the coequalizer Tmon of ϕ1 and ϕ2

has algebras isomorphic to the equalizer of G1 and G2, thus this is gives the data of a monoid
object in E

Tmon -Alg = { (X,m, e) : m ◦m×X = m ◦X × e,m ◦ e×X = idX ,m ◦X × e = idX } .

Example 2.7.8. In the exercise classes we will see Cat is locally finitely presentable. Let
D = {0 ⇒ 1} be the category with two objects and two non trivial parallel morphisms. We
now want to show that small categories with chosen coequalizers are monadic. First we take
the endofunctor F1 : Cat→ Cat given by C 7→ [C,D] and obtain

F1 -Alg = {(C, l : [C,D]→ C)}

We want to say that such a l is left adjoint to the constant diagram functor c : C→ [C,D]. For
this we need unit η and counit ε. To construct them we use the arrow category [1], since giving
a natural transformation

C D

f

g

amounts to giving a commutative diagram
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C

C×[1] D

C

f

g

so we can get the counit ε : l◦c→ id using the endofunctor F2(C) = C×[1]. Since the unit has to
be of the form η : [D,C]× [1]→ [D,C], there has to be done a bit more. But the functor [D, ] is
right adjoint to ×D and via this adjunction such a morphism corresponds to [D,C]×[1]×D→ C.
So we can get the unit using the endofunctor given by F3(C) = [D,C] × [1] ×D. Now we can
express, having ”same” natural transformations with desired source and target via equalizers
of ( ) -Alg. Also the ∆-identities then can be expressed in a second coequalizer step. But
in this construction the following problem appears: since the morphisms preserve the chosen
coequalizers on the nose, they will rarely arise in nature.



3 Monads in 2-category theory

3.1 Symmetric monoidal categories

Definition 3.1.1. A monoidal category is a tuple (V,⊗, I, α, λ, ρ), where V is a category,
⊗ : V×V→ V a functor, I ∈ V an object, α : (−⊗−)⊗− ⇒ −⊗ (−⊗−), λ : I ⊗− ⇒ id and
ρ : −⊗I ⇒ id natural isomorphisms such that for every W,X, Y, Z ∈ V the diagrams

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗ Z)

αW,X,Y⊗ZαW⊗X,Y,Z

αW,X,Y ⊗idZ

αW,X⊗Y,Z

idW ⊗αX,Y,Z

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y

αX,I,Y

ρX⊗idY idX ⊗λY

commute. We call ⊗ the tensor product, I the unit object or tensor unit, α the associator, λ
the left unitor and ρ the right unitor. For convenience, we shall denote −⊗ idX and idX ⊗− by
−⊗X and X ⊗− respectively.

Example 3.1.2. We now list some monoidal categories.

1. If E is a category with finite products, then (E,×, ∗) is monoidal, with α, λ and ρ induced
by the universal property. Instances of this are Set, Cat, Grp, sSet, Top, CGTop and
CGHTop.

2. (Ab,⊗Z,Z) and, given a commutative ring R, (ModR,⊗R, R) and (dgModR,⊗R, R).

3. The order R+ = [0,∞] with ⊗ = +, I = 0.

4. A monoid in Cat or CAT is a monoidal category such that α, λ and ρ are identities.
This is the case of [C,C], [C,C]κ and Φ -Cocts[C,C].

We mention without proof the following fundamental theorem.

Theorem 3.1.3 (Mac Lane). Any diagram built from ⊗, I, α, λ, ρ and their iterations is
commutative.

Given a word of objects tensored among them, any two choices of bracketing are uniquely
isomorphic. This result is plausible if ⊗ is derived from an universal property as in (1) − (3)
and clear if V is strict (that is the natural isomorphisms are identities), like in (3) and (4), while
the general proof uses a rewriting argument which can be found in [Mac98].

40



3.1. Symmetric monoidal categories 41

Definition 3.1.4. A lax monoidal functor from V to W is a triple (F, φ0, φ), where F : V→W

is a functor, φ0 : IW → FIV a morphism and φ : ⊗W◦(F×F )⇒ F ◦⊗W a natural transformation
such that for all X,Y, Z ∈ V the diagrams

(FX ⊗W FY )⊗W FZ FX ⊗W (FY ⊗W FZ)

F (X ⊗V Y )⊗W FZ FX ⊗W F (Y ⊗V Z)

F ((X ⊗V Y )⊗V Z) F (X ⊗V (Y ⊗V Z))

αW

φX,Y ⊗WFZ FX⊗WφX,Z

φX⊗VY,Z
φX,Y ⊗VZ

FαV

IW ⊗W FX FIV ⊗W FX

FX F (IV ⊗V X)

φ0⊗WFX

λWX
φIV,X

FλVX

FX ⊗W IW FIV ⊗W FX

FX F (IV ⊗V X)

FX⊗Wφ0

ρWX
φX,IV

FρVX

are commutative.
If we reverse the direction of φ0 and φ we get oplax monoidal functors.
A strong (strict) monoidal functor is a lax monoidal functor such that φ0 and φ are isomor-

phisms (identities).
A monoidal natural transformation from (F, φ0, φ) to (G,ψ0, ψ) is a natural transformation

γ : F ⇒ G such that the diagrams

FX ⊗W FY GX ⊗W GY

F (X ⊗V Y ) G(X ⊗V Y )

γX⊗WγY

φX,Y ψX,Y

γX⊗VY

IW

FIV GIV

φ0 ψ0

γIV

commute.

Proposition 3.1.5. Lax monoidal functors compose and monoidal natural transformations
whisker.

Proposition 3.1.6. There is a finitary monad T on Cat such that T -Alg is the category of
monoidal categories and strict monoidal functors.

Proof. We can write down a presentation of this monad using the finitary endofunctors X 7→
X ×X, X 7→ X ×X ×X × [1].

Example 3.1.7. Given a locally small monoidal category V, the functor V(I,−) : V → Set is
lax monoidal, with φ0 : {∗} → V(I, I), ∗ 7→ idI and φX,Y sending (f, g) ∈ V(I,X)× V(I, Y ) to
(f ⊗ g) ◦ λ−1

I = (f ⊗ g) ◦ ρ−1
I : I

∼−→ I ⊗ I → X ⊗ Y . It is universally denoted by V : V → Set
and, if V has coproducts, it has a left adjoint given by F : Set→ V, S 7→ qSI.

Assuming for simplicity that V is cocomplete, it is easy to show that F is strong monoidal if
⊗ preserves colimits in each variable by using that Set is the free cocomplete category on {∗}.

The previous example is an instance of a more general phenomenon, as shown by the following
result.
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Theorem 3.1.8. Let F : V → W be a left adjoint to U . If V, W are monoidal, F , U lax and
η, ε monoidal natural transformations, then F is strong monoidal. Conversely, if (F, φ0, φ) is
strong monoidal and U is any right adjoint, then

IV UFIV

UIW

ηIV

ψ0
Uφ−1

0

UX ⊗V UY U(X ⊗V Y )

UF (UX ⊗V UY ) U(FUX ⊗W FUY )

ψX,Y

ηUX⊗VUY

Uφ−1
UX,UY

U(εX⊗WεY )

define a lax monoidal structure on U which is unique with the property that η, ε are monoidal.

Proof. Exercise.

Example 3.1.9. Given a homomorphism of commutative rings R → S, then − ⊗R S a U ,
where U is the restriction on scalars, and −⊗R S : ModR →ModS is a monoidal adjunction.

The free module functor Set→ModR is strong monoidal by the previous example.

Remark 3.1.10. The last example still holds if we substitute to ModR any cocomplete
monoidal category V with −⊗ V , V ⊗− cocontinuous.

Definition 3.1.11. A monoid in a monoidal category V is a triple (M,m, u) wherem : M⊗M →
M is the multiplication, u : I →M the unit and the diagrams

(M ⊗M)⊗M M ⊗ (M ⊗M)

M ⊗M M ⊗M

M

αM,M,M

m⊗M M⊗m

m m

I ⊗M M ⊗M M ⊗ I

M

u⊗M

λM
m

M⊗u

ρM

commute.
Morphisms of monoids are maps f : M →M ′ such that m′ · (f ⊗ f) = f ·m, f · u = u′.
We write Mon(V) for the category of monoids over V.

Remark 3.1.12. If V is additive, monoids are often called algebras as well because Mon(ModR) =
AlgR and Mon(dgModR) = dgAlgR.

Example 3.1.13. For R a commutative ring, AlgR is locally finitely presentable

Proposition 3.1.14. If F : V→W : U is a monoidal adjunction (F strong, U monoidal), then
F a U lifts to an adjunction of monoids

Mon(V) Mon(W)

V W

F

⊥

U

F

⊥
U
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where F (M,m,n) = (FM,Fm◦φFM,M , Fn◦φF0 ) and U(M ′,m′, n′) = (UM,Um′ ◦φUM,M , Un
′ ◦

φU0).

Proof. The axioms for lax monoidal functors show that these are indeed monoids, naturality of
φF , φU shows that Ff is a monoid morphism if f is. It follows that F ,U are indeed functors.
Axioms for monoidal transformations show η, ε are monoid morphisms, hence F a U .

Example 3.1.15. i) A ring homomorpshism R → S of commutative rings induces base

change functors AlgR AlgS .
S⊗R−

forget
This also works for commutative algebras, etc.

ii) Let C be locally κ-presentable. Then [C,C]κ → [C,C] is strict monoidal and a left adjoint,
so it lifts to a left adjoint Modκ(C) →Mod(C). Why is it left adjoint? Let K : Cκ → C

be the inclusion. Since Φ is cocontinuous we have

[C,C]κ [Cκ,C]

[C,C]

'

LanK

K∗

a

From this it follows that the inclusion is indeed a left adjoint.

Remark 3.1.16. This completes the proof that (−) -Alg : Mndκ(C)op → (Cat ↓ C) is full and
faithful and sends colimits of monads to limits of categories.

Let (V,⊗, I) be a monoidal category such that x ⊗ − and − ⊗ x preserve coproducts for all
x ∈ V. The category of V-matrices with index set S is [S × S,V] =

∏
S×S V and denoted by

Mat(V, S). There is a natural monoidal structure on Mat(V, S) given by matrix multiplication

M(x, y)(x,y)∈S2 ⊗N(x, y)(x,y)∈S2 =
(∑
z∈S

M(z, y)⊗N(x, z)
)

(x,y)∈S2

and the unit (Ix,y)(x,y)∈S2 where Ix,y = I if x = y and Ix,y = ∅ otherwise. The triple (α, λ, ρ)
on Mat(V, S) is induced by the one on V via the universal properties of coproducts.

Definition 3.1.17. A V-category A with object set S is a monoid in Mat(V, S), i.e. for each
pair (a, b) ∈ S2 there is a unique object A(a, b) ∈ V, called the V-object of homomorphisms.

Moreover we have units I
ida−−→ A(a, a) and composition homomorphisms

A(b, c)⊗A(a, b)
Ca,b,c−−−→ A(a, c)

such that the diagram

(A(c, d)⊗A(b, c))⊗A(a, b) A(c, d)⊗ (A(b, c)⊗A(a, b))

A(b, d)⊗A(a, b) A(c, d)⊗A(a, c)

A(a, d)

C⊗A(a,b)

∼=

A(c,d)⊗C

C C

commutes and the two unit axioms hold. This is in fact the definition if V does not have all
coproducts or x⊗− does not preserve them.
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Example 3.1.18. • V = Top topological categories

• V = Ab additive categories

• V = ModR  linear categories

• V = Modd.g.
R  graded categories

• V = Cat 2-categories

• V = n-Cat strict (n+ 1)-categories

Proposition 3.1.19. If V is presentable and both x ⊗ − and − ⊗ x are κ-accessible for all
x ∈ D and preserve coproducts, then the category of V-categories with fixed object set S is
locally κ-presentable.

Proof. It suffices to show that the matrices are κ-accessible in each variable, which follows from
the fact that colimits commute.

Definition 3.1.20. Let V be a monoidal category with coproducts, and such that x ⊗ − and
−⊗ x preserve coproducts for each x ∈ V. Let f : S → T be a map of sets. We write

f∗ : Mat(V, T )→ Mat(V, S)

(T × T M−→ V) 7→ (S × S f×f−−−→ T × T M−→ V)

and f∗ : Mat(V, S)→ Mat(V, T ) for its left adjoint, given by

(f∗M)(a, b) =
∑

{(x,y) : fx=a,fy=b}

M(x, y).

Proposition 3.1.21. The left adjoint is strong monoidal.

Definition 3.1.22. A V-functor (S,A)→ (T,B) is a pair (F, (Fa,b)(a,b)∈S2) where F : S → T is
a function and (Fa,b)(a,b)∈S2 is a monoid morphism A→ F ∗B, that is Fa,b : A(a, b)→ B(Fa, Fb)
is a morphism in V for any a, b ∈ S.

We denote the resulting category of small V-categories by V-Cat. We may also define V-CAT
as the category of all V-categories. We may define the category of V-graphs analogously. We
have an obvious forgetful functor from V-categories to V-graphs.

Example 3.1.23. We now want to see what happens if we take V = Cat. That is unveiling
the data of a 2-category. First we have a class of objects Ob(K), called 0-cells, and for any two
A,B ∈ Ob(K), we have a category K(A,B). We call the objects of K(A,B) 1-cells from A to
B and denote them f : A→ B. The morphisms in K(A,B) are called 2-cells, denoted by

A B

f

g

α

The categorical structure of K(A,B) now tells us that we have a vertical composition operation

A B
α

β
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which is associative and has a unit idf : f ⇒ f . We also have identities idA : ∗ → K(A,A),
written idA : A → A, and composition functors K(B,C) × K(A,B) → K(A,C) which give in
particular horizontal composition of 1-cells A→ B → C and whiskering operations

(B C,A B) A B

g

h

f
α

gf

hf

αf

and similarly on the other side. Saying that this defines a functor means that these operations
satisfy the interchange law: That is, given a diagram of the form

A B C

f

g

α

h

k

β

we have βg · hα = kα · βf or in pictures

· · · = · · ·

· · · · · ·

This follows from the fact that giving a functor F : C×D→ E amounts to giving a compatible
collection of functors F ( , d) and F (c, ) for all (c, d) ∈ C×D.

Example 3.1.24. Examples of 2-categories are

(i) Cat and CAT with small or locally small categories as 0-cells, functors as 1-cells and
natural transformations as 2-cells.

(ii) Locally κ-presentable categories, κ-accessible functors and natural transformations.

(iii) Monoidal categories, lax monoidal functors and monoidal natural transformations.

(iv) For V a monoidal category, V -Cat and V -CAT are 2-categories. 0-cells are small/locally
small V-categories, 1-cells are V-functors and 2-cells are V-natural transformations.

Definition 3.1.25. Let A and B be two V-categories and F,G : A → B be two V-functors.
Then a V-natural transformation F ⇒ G is a collection of morphisms (αA : I → B(FA,GA))A∈A
in V (note that this collection can be indexes by a class of objects), such that for all objects
A,B in A the diagram

I ⊗A(A,B) B(FB,GB)⊗B(FA,FB)

A(A,B) B(FA,GB)

A(A,B)⊗ I B(GA,GB)⊗B(FA,GA)

αB⊗F

◦λ−1

ρ−1

G⊗αA

◦

is commutative. We then first define the whiskering operations. consider the diagram

A′ A B B′K
F

G

α
L



3.1. Symmetric monoidal categories 46

then we define (L,α)A∈A via the composition

I B(FA,GA) B′(LFB,LGB)
αA L

and (α,K)A′∈A′ by αKA′ : I → B(FKA′, GKA′). Clearly αK is a V-natural transformation
FK ⇒ GK. To see this for Lα compare the needed diagram with

B(FB,GB)⊗B(FA,FB) B′(LFB,LGB)⊗B′(LFA,LFB)

B(FA,GB) B′(LFA,LGB)

B(GA,GB)⊗B(FA,GA) B′(LGA,LGB)⊗B′(LFA,LGA)

◦

L⊗L

◦

L

L⊗L

◦ ◦

Now given a diagram of the form

A B

F

G

H

α

β

we define the vertical composition (β · α)A by

I ∼= I ⊗ I B(GA,HA)⊗B(FA,GA) B(FA,HA)
βA⊗αA ◦

with unit natural transformation idFA : I → B(FA,FA). We leave it to the reader to check
associativity and the interchange law.

Example 3.1.26. For V = Set, we get precisely the 2-categories of categories, functors and
natural transformations. What happens if instead we take Cat or even CAT. 0-cells are 2-
categories? 1-cells are 2-functors or Cat-functors, that is: given two 2-categories K,K′, we have
an assignment Ob(K) → Ob(K′) of the form A 7→ FA and for any two objects A,B in Ob(K)
there is a functor FA,B : K(A,B)→ K′(FA,FB)

A B FA FB

f

g

α

Ff

Fg

Fα

to say that this defines a functor is exactly to say that this assignment respects vertical com-
position. The first V-functor axiom says that F idA = idFA and the second that the diagram

K(B,C)×K(A,B) K(A,C)

K′(FB,FC)×K′(FA,FB) K′(FA,FC)

◦

F×F F

◦

commutes, so F preserves the whiskering operation. What is a 2-natural transformation?

K K′
F

G

α
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For all objects A in Ob(K) we have a morphism αA : ∗ → K′(FA,GA), i.e. a 1-cell αA : FA→
GA, such that the Cat-naturality axioms hold. That is the diagram

K′(FB,GB)×K′(FA,FB)

K(A,B) K′(FA,GB)

K′(GA,GB)×K′(FA,GA)

◦αB×F

G×αA ◦

commutes. On objects that says, that for any 1-cell f : A→ B the diagram

FA FB

GA GB

Ff

αA αB

Gf

commutes and on morphisms it says that for all 2-cells ϕ : f ⇒ g, we have

FA FB = FA FB

GA GB GA GB

Ff

FgαA

Fϕ

αB

Ff

αA αB

Gg

Gf

Gg

Gϕ

Such transformations are called (strict) 2-natural transformations. The constructed categories
will be denoted by 2-Cat and 2-CAT.

Definition 3.1.27. Let V be a monoidal category. A V-monad is a monad in V -Cat or V -CAT.
In other words, a V-monad on a V-category C (a 0-cell in V -CAT) is a V-functor T : C → C

equipped with V-natural transformations µ and η filling the usual pasting diagrams.

The goal of the following section is to use them to define new V-categories from old ones and
develop enriched category theory. Namely, we will construct a new V-category of T -algebras
out of a V-monad T . For this we need the underlying ordinary or unenriched category of a
V-category C. We have a lax monoidal functor V : V→ Set which induces the functor

V -CAT −→ Set-CAT = CAT

C 7−→ V∗ C

Here V∗ C has the same object class as C and V∗ C(a, b) = V (C(a, b)). For the composition we use
the lax monoidal structure of V, i.e. the morphisms in V∗ C from a to b are given by morphisms

I
f−→ C(a, b). The composition of the morphisms f : a→ b and g : b→ c is the morphism defined

as
g ◦ f = I

∼−→ I ⊗ I g⊗f−−→ C(b, c)⊗ C(a, b)
◦−→ C(a, c).

We write C0 for the underlying unenriched category of C. It would be good if (T -Alg)0
∼= T0 -Alg

in the sense we defined before. The objects should be T0-algebras, i.e. pairs (A,α), α : TA →
A ∼= I

α−→ C(TA,A) such that the two algebra axioms hold.
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Example 3.1.28. A few examples of the action of the functor V -CAT→ CAT:

1. when V = ModR we just forget the additive structure of the hom-sets;

2. if V = Top we forget the topology;

3. for V = dgModR we consider cycles of degree zero;

4. if V = (sSet,×) then V∗ C forgets all the simplices in C(a, b) except the 0-simplices, i.e.
the vertices;

5. if V = R+, a V-enriched category is a metric space (in the sense of Lawvere) and the
composition is given by the triangle inequality. The functor above just sees the poset of
real numbers as a set.

From now on we assume that V has equalizers.

Proposition 3.1.29. Let C be a V-category and (T, µ, η) a V-monad on C. For algebras
(A,α), (B, β) ∈ T0 -Alg let

C(TA, TB)

T -Alg((A,α), (B, β)) C(A,B) C(TA,B)

β∗

U α∗

T

be an equalizer in V, where β∗ is the composition

C(TA, TB) ∼= I ⊗ C(TA, TB)
β⊗id−−−→ C(TB,B)⊗ C(TA, TB)

◦−→ C(TA,B)

and similarly α∗ = ◦ · id⊗α. Then there is a unique way to define a structure of V-category
with objects equal to T0 -Alg and hom-object T -Alg((A,α), (B, β)) ∈ V such that U becomes a
V-functor.

Proof. For the identities note that idA : I → C(A,A) equalizes the two arrows if (A,α) = (B, β).
Namely, we have idA ·α = α · T idA, thus we get a factorization

T -Alg((A,α), (A,α)) C(A,A)

I

U

∃! id(A,α) idA

and by U being regular monic we have to define id(A,α) as this dashed arrow if we want U to
be a V-functor. Similarly we want to define composition s.t. the diagram

T -Alg((B, β), (C, γ))⊗ T -Alg((A,α), (B, β)) C(B,C)⊗ C(A,C)

T -Alg((A,α), (C, γ)) C(A,C)

U⊗U

◦

U

commutes. So one has to check that ◦ ·U ⊗U equalizes the two arrows defining the equalizer at
the bottom of the diagram. One checks that this is the case by translating the usual proof that
morphisms of T -algebras compose first into a proof just using the hom-sets (not their elements)
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and then into a proof in the monoidal category V. It remains to check that this defines a V-
category and that U is indeed a V-functor. The first follows from the fact that each U((A,α),(B,β))

is a monomorphism and the fact that C is a V-category. By design, the diagrams above are
exactly the V-functor axioms for U . This also shows uniqueness.

Example 3.1.30. If V =“sets with structure” we just get the corresponding substructure on
the morphism set, e.g. subspace topology, submodules etc.

1. If G is a topological group then G×− : Top→ Top is a Top-monad if Top is a cartesian
closed category of topological spaces such as compactly generated weak T2 spaces. From
that we get the topological category of G-spaces.

2. If V = Ab and R is a ring, then Ab is an Ab-category since we can sum morphisms of
abelian groups and this is Z-bilinear. Moreover −⊗ZR : Ab→ Ab is an additive monad.
T -Alg is simply ModR with addition of R-module homomorphisms.

3. For V = Cat we have 2-monads T in 2-CAT. From a 2-category K with a 2-monad
T : K → K we get a new 2-category T -Alg. 0-cells are elements of T0 -Alg, namely pairs
(A,α) s.t.

T 2A TA

TA A

µA

Tα

α

α

A TA

A

ηA

α

are commutative. A 1-cell in T -Alg is simply a morphism in T0 -Alg, that is, a 1-cell

A
f−→ B in K s.t. the diagram

TA TB

A B

α

Tf

β

f

is commutative. A 2-cell in T -Alg is a morphism in the equalizer

K(TA, TB)

T -Alg((A,α), (B, β)) K(A,B) K(TA,B)

β∗

U α∗

T

i.e. a 2-cell ϕ : f ⇒ g such that

TA TB

A B

α β

g

Tϕ

=

TA TB

A B

α β

ϕ

In this case we can talk about pseudomorphisms and lax/oplax morphisms. For lax
morphisms those are the squares

TA TB

A B

Tf

f̄

f
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(f̄ is an isomorphism in the pseudo case) subject to some axioms.

We get four 2-categories from T : the original T -Alg is called T -AlgS and its 1-cells are the
strict morphisms of algebras. We have non-full inclusions

T -AlgL

T -AlgS T -AlgP

T -AlgL

There is a 2-monad T on Cat s.t. T -AlgP = Monstr(Cat) with strong morphisms.
Now we want to define opposite V-categories and V-functors of several variables using the

tensor product of V-categories. This is similar to the product of categories C×D, however there
(f, f ′) · (g, g′) = (fg, f ′g′), which changes the order of f ′ and g. The following definition allows
us to fix this.

Definition 3.1.31. Let V be a monoidal category. A braiding on V is a natural isomorphism

V× V V× V

V

τ

⊗ ⊗γ
∼

,

where τ is the switch functor and for all A,B,C ∈ V the diagram

A⊗ (B ⊗ C) (B ⊗ C)⊗A

(A⊗B)⊗ C B ⊗ (C ⊗A)

(B ⊗A)⊗ C B ⊗ (A⊗ C)

γ

α

γ⊗id

α

α
id⊗γ

and the one obtained by inverting the α commute.
A braiding is called a simmetry if γA,B ◦ γB,A = id for all A,B ∈ V.

Remark 3.1.32. If γ is a simmetry, then either one of the above hexagons implies the other.
Moreover, the diagram

I ⊗A A⊗ I

A

γI,A

λA ρA

commutes.

Example 3.1.33.

(i) If E = (E,×, ∗) is cartesian, then the switch τ : E × E → E defines a simmetry. This is the
case of Set, categories of presheaves, sSet, Top, Cat, etc.
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(ii) If R is a unital commutative ring, ModR is a symmetric monoidal category with γ : M ⊗R
N → N ⊗RM the canonical isomorphism.

(iii) If A is an abelian group, write A-ModR for the category of A-graded R-modules, that is
ΠAModR. We have a functor A-ModR×A-ModR → A-ModR, ((Vi), (Wi)) 7→ (

⊕
i+j=k Vi⊗R

Wj). This has a monoidal structure with unit R concentrated in degree 0 ∈ A. There are
obvious choices for λ and ρ.

A normalized 3-cocycle on A with values in R× is a function h : A×A×A→ R× such that,
for any tuple (i, j, k, l) ∈ A4

h(i, 0, j) = 1,

h(j, k, l) · h(i, j + l, k) · h(i, j, k) = h(i, j, k + l) · h(i+ j, k, l).

We define αh : ((U•)⊗ (V•))⊗ (W•) → (U•)⊗ ((V•)⊗ (W•)) on the component given by the
triple (i, j, k) as

(Ui ⊗ Vj)⊗Wk → Ui ⊗ (Vj ⊗Wk)

(a⊗ b)⊗ c 7→ h(i, j, k) · a⊗ (b⊗ c)

The two axioms for normalized 3-cocycles say precisely that this is a monoidal structure on
A-ModR. Also, by considering modules concentrated in a single degree, one finds that all
associators are of this form.

A normalized abelian 3-cocycle is an arrow h as above plus a map c : A×A→ R× such that,
for any triple (i, j, k) ∈ A3,

h(j, k, i) · c(i, j + k) · h(i, j, k) = c(i, k) · h(j, i, k) · c(i, j),
h(k, i, j)−1 · c(i+ j, k) · h(i, j, k)−1 = c(i, k) · h(i, j, k)−1 · c(j, k).

Given such (h, c), we get a braiding defined by

Vi ⊗Wj →Wj ⊗ Vi
a⊗ b 7→ c(i, j) · b⊗ a

and this is a symmetry if and only if c(i, j) = c(j, i) = 1 for all i, j.
If we take the constant map h ≡ 1, then the two axioms say exactly that c is bilinear.
For A = Z, given any u ∈ R× we can define c(i, j) = u|ij|, which gives a symmetry if u2 = 1.

In particular, if R is a domain we have R× = {±1} and the condition is always satisfied.
There are then only two symmetric monoidal structures on Z-ModR, the trivial one and the

one given by Vi ⊗Wj →Wj ⊗ Vi, a⊗ b 7→ (−1)|ij| · b⊗ a. The latter is the symmetry given by
the Koszul sign rule.

(iv) The simmetry given by the Koszul sign rule lifts to a symmetry on dgModR, while the
trivial one does not.

Remark 3.1.34. The coherence theorem for braided (symmetric) monoidal categories does not
say that “all diagrams commute”, in particular γX,X : X ⊗ X → X ⊗ X in general is not the
identity on X ⊗ X. Instead, it tells us that the morphism is completely given by a labelled
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braid, for example

A

AB

B

C

C

C

C

C

C

completely describes a map A ⊗ B ⊗ C ⊗ C ⊗ C → C ⊗ A ⊗ B ⊗ C ⊗ C. If γ is a symmetry,
then only the permutation of the objects matters, hence the following braids induce the same
morphism.

B

BA

A

A

A

A

AB

B

B

B

Definition 3.1.35. Let V and W be braided monoidal categories, F : V→W a lax/strong/strict
monoidal functor. We call F a braided lax/strong/strict monoidal functor if the diagram

FA⊗W FB FB ⊗W FA

F (A⊗V B) F (B ⊗V A)

γW

φ φ

FγV

commutes.
A braided natural transformation is just a monoidal natural transformation between braided

monoidal functors.
If V and W are braided symmetric monoidal categories, then the braided functors and natural

transformations are also called symmetric.

Example 3.1.36.

(i) If φ : R → S is a map of commutative rings, then −⊗R S : ModR →ModS is a symmetric
strong monoidal functor.

(ii) If A is an abelian group, (h, c) a normalized abelian 3-cocycle on A with values in R× and

φ : R → S a ring homomorphism, we have that S ⊗R − : A-Mod
(h,c)
R → A-Mod

(φh,φc)
S is a

braided strong monoidal functor. In particular, base change is a symmetric strong monoidal
functor for both the trivial and the Koszul symmetry on Z-ModR.

(iii) If F is a braided strong monoidal left adjoint, then the right adjoint is braided lax monoidal.

Definition 3.1.37. Let V be a braided monoidal category. A monoid (M,µ, η) in V is commu-
tative if

M ⊗M M ⊗M

M

γM,M

µ µ

commutes.
A morphism of commutative monoids is just a morphism of monoids.
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Remark 3.1.38. In general, a lax monoidal functor will not lift to commutative monoids, but
a braided lax monoidal functor will. It follows that we have a 2-functor CMon : BrMonCAT→
CAT, V 7→ CMon(V), sending braided monoidal categories to their categories of commutative
monoids.

Theorem 3.1.39. If V is a locally presentable monoidal category with − ⊗ − cocontinuous
in both variables, then CMon(V) → V is monadic and accessible. Also, CMon(V) is locally
κ-presentable if V is.

Proof. Adapt the one for all monoids with an additional action.

Definition 3.1.40. Let V be a braided monoidal category. Define the opposite of a V-category A

by:

• Ob(Aop) = Ob(A),

• Aop(A,B) = A(B,A),

• idA the same morphism as for A and

• composition by the diagram

Aop(B,C)⊗Aop(A,B) A(C,B)⊗A(B,A)

Aop(A,C) = A(C,A) A(B,A)⊗A(C,B)

◦Aop γ

◦A

We want to talk about V-functors of “several variables.” For this we need A⊗B.

Definition 3.1.41. Let A,B be V-categories. Define the V-category A⊗B by

• Ob(A⊗B) = Ob(A)×Ob(B)

• (A⊗B)((A,B), (A′, B′)) = A(A,A′)⊗B(B,B′)

• identities: I ∼= I ⊗ I idA⊗ idB−−−−−−→ A⊗B((A,B), (A,B)) and

• compositions

(A(A′, A′′)⊗B(B′, B′′))⊗ (A(A,A′)⊗B(B,B′))

A(A′, A′′)⊗A(A,A′)⊗B(B′, B′′)⊗B(B,B′)

A(A,A′′)⊗B(B,B′′)

isomorphism built from γ’s

◦⊗◦

Note: The first isomoprhism is unique, if V is symmetric.

The final ingredient for Yoneda is the enrichment of V over itself. For this we need an internal
Hom-functor.
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Definition 3.1.42. A monoidal category V is closed monoidal if for any X ∈ V the functors
X ⊗ − and − ⊗X have right adjoints [X,−]l and [X,−]r. We denote the unit and counit by
coev and ev respectively. For example

evXY : [X,Y ]r ⊗X → Y.

Remark 3.1.43. If V is braided, we have −⊗X ∼= X ⊗−, so [−,−]l exists if and only [−,−]r
does and they are isomorphic. We simply write [−,−] = [−,−]r in this case. In other words
V(X ⊗ Y, Z) ∼= V(X, [Y, Z]).

Remark 3.1.44. If −⊗X and X⊗− have right adjoints, the monoidal natural transformatons
may not define a braiding γ! We need more compatibility.

Proposition 3.1.45. Let V be a right-closed (that is [−,−]r exists) monoidal category. Then
the morphisms

[Y,Z]r ⊗ [X,Y ]r → [X,Z]r and I → [X,X]r

correponding to

([Y, Z]r ⊗ [X,Y ]r)⊗X Z

[Y,Z]r ⊗ ([X,Y ]r ⊗X) [Y,Z]r ⊗ Y

α

id⊗ evX

evY and I ⊗X λX−−→ X

give a V-category structure on Ob(V) with underlying category isomorphic to V.

Proof. The proof is slightly tedious and we refer to Kelly’s book.
A more abstract argument is possible if V is locally presentable and biclosed. Then we have

a monoidal left adjoint

V [V,V]κ [V,V]

X −⊗X

> >

Use the [V,V]-enrichment on Ob(V) given by 〈V,W〉 (previous exercise). Pull this back along
the right adjoint and get R〈V,W〉 = [V,W ]r.

Example 3.1.46. 1) If V is a category of “sets with structure,” that is if V : V → Set is
monadic (for example V = ModR,Ab or V = TopCGWH), then [−,−] is just the obvious
structure on Hom-sets of V. Specifically if M,N are R-modules, then HomR(M,N) has
the natural R-modules structure.

2) For V = Cat, [A,B] is just the category of functors from A to B. Note that this is not
just structure on the Hom-sets, we need the additional data of natural transformations.

3) Even more involved: dgModR, sSet:

If we have all these structures, that is a symmetric monoidal closed category, we can define
a V-functor

C(−,−) : Cop ⊗ C→ V.

In order to do this, we use the following way of constructing functors A⊗B→ C:

Proposition 3.1.47. To give a V-functor T : A⊗B→ C amounts to giving families of functors
(T (A,−) : B→ C)A∈A and (T (−, B) : A→ C)B∈B such that
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i) On objects T (A,−)(B) = T (−, B)(A), which we denote by T (A,B).

ii) A,A′ ∈ A and B,B′ ∈ B the diagram

A(A,A′)⊗B(B,B′) C(T (A,B′), T (A′, B′))⊗ C(T (A,B), T (A,B′))

C(T (A,B), T (A′, B′))

B(B,B′)⊗A(A,A′) C(T (A′, B), T (A′, B′))⊗ C(T (A,B), T (A′, B))

T (−,B′)⊗T (A,−)

γ

◦

T (A′,−)⊗T (−,B)

◦

commutes. This means that “it does not matter in which way we compose.” In this case,
T(A,B),(A′,B′) is given by the now well defined composite in the above diagram.

Proof. Long exercise.

Now we need to define C(c,−) : C → V, C(−, c) : Cop → V. But C(−, c) is just Cop(c,−), so
we only need to prove that the covariant one is a well defined functor. On objects we define
C(c,−)(c′) = C(c, c′) ∈ V. The action on morphisms is given by the morphism

C(c,−)c′,c′′ : C(c′, c′′)→ [C(c, c′),C(c, c′′)]

correponding under adjunction to the composition

C(c′, c′′)⊗ C(c, c′)
◦−→ C(c, c′′)

The diagram in the above proposition commutes by adjunction since composition is associative.

Example 3.1.48. 1) For V =“sets with structure,” the functor C(−,−) simply defines a lift

V

Cop ⊗ C

Set

V

C(−,−)

C0(−,−)

we remember that C(−,−) is an R-module, a topological space, etc.

2) For C = Cat, we get K(−,−) : Kop ×K→ Cat, (x, y) 7→ K(x, y), a 2-functor, where the
action on 1-cells is given by whiskering on either side.

3) For V itself, we get V(−,−) : Vop ⊗ V → V, (V,W ) 7→ [V,W ]. The underlying set of
this is V(I, [V,W ]) ∼= V(V,W ). To avoid confusion, we will write V0(V,W ) for the set of
morphisms in V.
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Proposition 3.1.49. There is a V-functor − ⊗ − : V ⊗ V → V which on Hom-objects is the
morphism

[X,X ′]⊗ [Y, Y ′]→ [X ⊗ Y,X ′ ⊗ Y ′]

corresponding by adjunction to the morphism

([X,X ′]⊗ [Y, Y ′])⊗ (X ⊗ Y ) ∼= ([X,X ′]⊗X)⊗ ([Y, Y ′]⊗ Y )
evX ⊗ evY−−−−−−→ X ′ ⊗ Y ′.

For this functor, α, λ, ρ are V-natural transformations. Moreover for each X, the maps evX and
coevX are V-natural, so −⊗X is a left adjoint to the functor [X,−] in V-CAT.

Proof. By adjunction. Straightforward, but tedious (see Kelly).

Remark 3.1.50. One can check that all “reasonable” morphisms built from the canonical ones
are V-natural. For example, if f : A→ B is a morphism in A0, we get V-natural transformations

A(f,−) : A(B,−)⇒ A(A,−) and A(−, f) : A(−, A)⇒ A(−, B)

defined by applying

A
op
0 ×A0 → Aop ⊗A

A(−,−)0−−−−−→ V0

to (f, id) and (id, f) respectively.
Further details - or more precisely a good list of instructions on how to preceed efficiently -

can be found in [Kel82, §1.7 and 1.8].

3.2 The weak Yoneda Lemma

Remark 3.2.1. With the morphism just defined, we can express V-naturality of α : F ⇒ G,
where F,G : C → D are V-functors, by saying that the following diagram commutes for all
c, c′ ∈ C.

C(c, c′) D(Fc, Fc′)

D(Gc,Gc′) D(Fc,Gc′)

F

G D(Fc,αc′ )

D(αc,Gc′)

Theorem 3.2.2 (Weak Yoneda lemma). Let V be a symmetric monoidal category, A a V-
category, F : A → V a V-functor, A ∈ A. Given a V-natural transformation α : A(A,−) ⇒ F ,
let φ(α) be the map

I
idA−−→ A(A,A)

αA−−→ FA.

The assignment

V- Nat(A(A,−), F )→ V0(I, FA)

α 7→ φ(α)

is a bijection whose inverse map ψ is given by sending η : I → FA to the V-natural transforma-
tion

A(A,B)
FA,B−−−→ [FA,FB]

[η,idFB ]−−−−−→ [I, FB] ∼= FB
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Proof. V-naturality follows from the general principle previously mentioned that “all” mor-
phisms coming from the monoidal structure are V-natural. Since FA,A(idA) = idFA, we get
φ · ψ = id by construction. We still have to prove that ψ · φ = id.

Consider the diagram

A(A,B) [A(A,A),A(A,B)] [I,A(A,B)] A(A,B)

[FA,FB] [A(A,A), FB] [I, FB] FB

A(A,−)

F

[idA,I]

[I,αB ]

∼

[I,αB ] αB

[αA,I]

[φ(B),I]

[idA,I] ∼

,

where the left and right squares on extremes commute by V-naturality, while for the one in the
middle we consider the functor [−,−] : Vop ⊗ V→ V.

The claim follows by checking that the composition is the identity.

Theorem 3.2.3 (Parametrized Yoneda). Let T : Bop⊗A→ V be a V-functor and suppose that
for all B ∈ B there exists a KB ∈ A and a V-natural isomorphism αB : A(KB,−)

∼
=⇒ T (B,−).

Then there is a unique way to define KB,C : B(B,C) → A(KB,KC) in V such that K is
a V-functor and (αB)A : A(KB,A) → T (B,A) is V-natural in both variables as a V-functor
Bop ⊗A→ V.

Proof. One checks that V-naturality of (αA)B amounts to commutativity of the diagram

B(B,C) A(KB,KC) [T (B,KB), T (B,KC)]

[T (C,KC), T (B,KC)] [I, T (B,KC)]

KB,C

T (−,KC)

T (B,−)

∼
(αB)KC

[ηB ,I]

[ηC ,I]

,

where ηB = φ(αB) and the triangle commutes by Yoneda. Since (αB)KC is an isomorphism
there exists a unique candidate KB,C and one only has to check that it works.

Remark 3.2.4. This is really useful as a way of constructing V-functors via universal properties
and representability results.

3.3 Weighted colimits and enriched presheaf categories

We want to define the V-category [Aop,V] of V-presheaves or V-functors for A small. We will
do this by defining a suitable V-monad T such that [Aop,V] := T -Alg. We want our category
to have at least coproducts and equalizers, so from now on we assume that V is a (co)complete,
symmetric monoidal and closed. Such an object is called cosmos, after Bénabou cosmos.

Definition 3.3.1. Let C be a V-category, (Cj)j∈J ∈ Ob(C)J a family of objects in C. We say
that a collection jj : Cj → C exhibits C as a V-coproduct of the (Cj)j∈J if

C(jj , D) : C(C,D)→ C(Cj , D)

is a product diagram in V0 for all D ∈ C.
Similarly, we define a V-coequalizer

A⇒ B → C
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by requiring that
C(C,D)→ C(B,D)⇒ C(A,D)

is a coequalizer in V0.
Dualizing the definitions, we find the notions of V-product and V-equalizer.

Remark 3.3.2. If we apply C0(−, A) : C0 → Set for every A ∈ C, we see that V-coproducts
and V-coequalizers are in particular coproducts and coequalizers in C0.

Example 3.3.3. For V = Cat, a V-coequalizer also has a 2-dimensional universal property,
that is given one A ⇒ B → C and a 2-cell from B to D there is a unique 2-cell from C to D
making the following diagram commute.

C

A B

D

b̄ ā

a

b
α

α

For enriched categories, there is an important third kind of colimit called copower or tensor.

Definition 3.3.4. Let C be a V-category, V ∈ V, C ∈ C. We say that the copower of C by
V exists if the V-functor [V,C(C,−)] : C → V is representable by some object V � C ∈ C, the
copower, that is we have a V-natural isomorphism C(V � C,−)

∼
=⇒ [V,C(C,−)].

Dualizing the definition, we find the notion of power or cotensor.

Remark 3.3.5. By parametrized Yoneda, we get a V-functor

−�− : V⊗ C→ C

if all copowers exist. It is associative up to coherent isomorphism, so it defines a kind of weak
action of V on C.

Example 3.3.6. For V = C = Cat, C × [1] is the copower of C ∈ C by [1] ∈ V. Indeed, we
have a pair of bijective correspondences inducing the one we want as follows:

C × [1]→ D ↔ C Dα ↔ C → D[1].

Proposition 3.3.7. A V-category C has V-coproducts and V-coequalizers if C0 has coproducts
and coequalizers and these are preserved by the functor C0(−, D) : C0 → Vop for every D ∈ C.

Proof. It follows from the definition.

Corollary 3.3.8. The V-categories V and Vop have all V-coproducts and V-coequalizers.

Proof. We need to check that [−, V ]0 : C0 → V
op
0 preserves coproducts and coequalizers, but

this is just [−, V ] : V0 → V
op
0 and we have [−, V ] a [−, V ] : Vop

0 → V0 because

V0(X, [Y, V ]) ∼= V0(X ⊗ Y, V ) ∼= V0(Y ⊗X,V ) ∼= V0(Y, [X,V ]).

For Vop, we need to check that [V,−]0 : V0 → V
op
0 preserves limits, which follows from −⊗V a

[V,−].
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Proposition 3.3.9. The V-category V has all powers and copowers given by [V,C] and V ⊗C
respectively.

Proof. We need V-natural isomorphisms [V, [C,D]] ∼= [V ⊗ C,D], which follows from the fact
that we have a V-adjunction − ⊗ C a [C,−]. Similarly, use the symmetry isomorphism to get
a V-natural isomorphism [D, [V,C]] ∼= [V, [D,C]].

Definition 3.3.10. A V-category C is V-cocomplete if it has all V-coequalizers, V-coproducts
and copowers. If it satisfies the dual conditions, then it is V-complete.

Example 3.3.11. If (Cj)j∈J is a family of V-(co)complete V-categories, then Πj∈JCj is a V-
(co)complete V-category.

Proposition 3.3.12. If C has powers (cotensors), then C is cocomplete if and only if C0 is
cocomplete and C has copowers.

Proof. ”⇒ ” : We have already seen this.
” ⇐ ” : We need to show that ordinary coequalizers and coproducts in C0 are automatically
V-coequalizers and V-coproducts. We will just check the case of coequalizers and leave the other
case for the reader. We know that we have a natural bijection of sets between equalizers

C0(K,D) Eq(C0(B,D) C0(A,D))
∼= f∗

g∗

in Set and coequalizers

A B K
f

g

k

in C0. For each E ∈ C and V ∈ V0 we have then the commutative diragram

C0(K.EV ) C0(B,EV ) C0(A,EV )

V0(V,C(K,E)) V0(V,C(B,E)) V0(V,C(A,E))

∼= ∼= ∼=

and since this holds for all V ∈ V0, this implies that C(K,E) ∼= Eq(f∗, g∗) in V, as claimed.

Corollary 3.3.13. V is complete and cocomplete as V-category.

Remark 3.3.14. Note, that the existence of powers for a strong generating set suffices.

Definition 3.3.15. We say that a V-functor F : C → D preserves (certain) V-coequalizers or
V-coproducts if F0 : C0 → D0 preserves coequalizers or coproducts.

To talk about preservation of copowers, we need a canonical comparison morphism F̄ : V �FC →
F (V �C), which we define to be

I D(V �FC,F (V �C))

[V,C(C, V �C)] [V,D(FC,F (V �C))]

η ∼=

where the lower horizontal morphism is [V, F ] and η corresponds via weak Yoneda to the V-
natural isomorphism C(V �C, ) ∼= [V,C(C, )].
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Definition 3.3.16. We say, that F preserves the copower V �C if F̄ : V �FC → F (V �C) is
an isomorphism in D0.

Lemma 3.3.17. Let C be a V-category and B ⊂ C the full subcategory generated by those
object B ∈ C such that V �B exists (in C) for all V ∈ V. Then B is closed in C under
V-coequalizers and V-coproducts.

Proof. Let

A B K
f

g

k

be a V-coequalizer such that A,B ∈ B. We need to show that the V-coequalizer of

V �A V �B
V � f

V � g

is given by V �K. Indeed we have an induced isomorphism

C(V �K,D) C(V �, D) C(V �A,D)

[V,C(K,D)] [V,C(B,D)] [V,C(A,D)]

eq

∃!∼= ∼= ∼=

eq

and the proof for coproducts is similar.

Theorem 3.3.18. Let C be a complete V-category and let T : C → C be a V-monad. Then
T -Alg is complete and U : T -Alg → C preserves V-powers, V-products and V-equalizers. If C

is also cocomplete, then T -Alg is cocomplete if and only if the underlying unenriched category
(T -Alg)0

∼= T0 -Alg is cocomplete.

Proof. We know that T0 -Alg is complete, so we need to show that equalizers and products are
V-equalizers and V-products. But hom-objects are defined as equalizers in V

T -Alg((A, a), (B, b)) C(A,B) C(TA,B)

and we thus get the claim for V-equalizers and V-products, since equalizers and products com-
mute with equalizers in V0. We will leave the claim for powers as an exercise. Once we have
the powers, we get from the cocompleteness of T0 -Alg that T -Alg has V-coequalizers and V-
coproducts. It remains to show that T -Alg has copowers. For this we use the lemma above:
since every object is a coequalizer of free algebras, hence a V-coequalizer, it suffices to check
this for free algebras, i.e. algebras in the image of the left V-adjoint F : C → T -Alg. So we
are done if we can show that left V-adjoints preserve copowers. This follows from the next
proposition.

Proposition 3.3.19. Left V-adjoints preserve V-coequalizers, V-coproducts and copowers.

Proof. Let F : C → D be a left V-adjoint F a U . The claims all follow as in the unenriched
case. For copowers we have the isomorphisms

D(F (V �C), D) ∼= C(V �C,UD) ∼= [V,C(C,UD)] ∼= [V,D(FC,D)]

and one checks that this is the coup morphism if the target has copowers.
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We are now ready to define enriched presheaf categories. Let A be a small V-category.
Then

∏
A∈Ob(A) V is clearly a complete and cocomplete V-category with everything computed

pointwise. We define the V-monad for presheaves as

T ((FA)A∈Ob(A)) =

 ∐
A∈Ob(A)

A(B,A)�FA


B∈Ob(A)

with unit given by identities and multiplication given by composition. A T -algebra is thus
a collection (FA)A∈Ob(A) ∈

∏
A∈Ob(A) V with action

∐
A(B,A)�FA → FB, which amounts

precisely to a V-functor A(B,A)→ [FA,FB] i.e. a V-functor Aop → V.

Definition 3.3.20. We write [Aop,V] for T -Alg and call it the V-category of V-presheaves on
A. By construction we have [Aop,V]0 = V-CAT(Aop,V).

Remark 3.3.21. (1) The same construction works for any cocomplete V-category C and we
get V-categories [Aop,C] and [A,C].

(2) The statement “T is a V-monad” actually needs to be checked. It can be done using Kelly
(1.7,1.8) and the universal properties of

∐
and � (see also later exercise).

(3) We have the enriched Yoneda lemma basically by definition: the free algebra of the col-
lection (IB)B∈Ob(A), given by I if B = A and ∅ else, is precisely A(−, A). So we get
isomorphisms

[Aop,V](A(−, A), F ) ∼= T -Alg((FIB)B∈Ob(A), F ) ∼=
∏

V(IB, (FB)B∈A) ∼= FA

(4) The hom-object is by definition the equalizer

[Aop,V](F,G)
∏
A[FA,GA]

∏
A,B[A(A,B)�FA,GB]

Proposition 3.3.22. The V-categories [Aop,C] and [A,C] are complete (resp. cocomplete), if
A is small and C is complete (resp. cocomplete).

Proof. This follows, since T0 is cocontinous.

Definition 3.3.23. Given a V-category C and a V-functor K : A → C, where A is small, we
have a natural T -action on the V-functor C→

∏
Ob(A) V given by the assignment c 7→ C(Ka, c).

Now we write

C(K,−) : C→ [Aop,V]

for the induced V-functor given by sending c to C(K−, c). This is also written as K̃.

Definition 3.3.24. Given a V-presheaf W : Aop → V and a V-functor K : A→ C, we say that
the W -weighted colimit of K exists if

[Aop,V](W,C(K,−)) : C→ Set

is corepresentable, that is there is a corepresenting object denoted by W �AK, such that

C(W �AK, c) ∼= [Aop,V](W,C(K−, c))

naturally in c ∈ C.
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We can think of Wa→ C(Ka, c) as a bunch of enriched cocones.

Example 3.3.25. (i) If A = J with Ob(J) = {∗} and J(∗, ∗) = {id∗}, then [Jop,V] ∼= V and
every J→ C amounts to giving an object c ∈ C. Hence v�J c is simply the copower v� c.

(ii) If D is an unenriched small category, we can consider the free V-category (I)∗D. Then
giving a V-functor (I)∗D→ C is the same as giving a functor D→ C0. The conical weight
∆I : (I)∗D

op → V gives us a functor Dop → V0 sending the whole category to the identity
of the monoidal category V. Then ∆I �I∗D F is really the same as a colimit of F̃ : D→ C0

with the additional property that C(colim F̃ d, c) ∼= limC(Fd, c) in V (rather than just a
bijection of sets). In particular, when C has powers there is no distinction between colimits
in C0 and ∆I -weighted colimits. Powers make it possible to lift the bijection of sets to an
isomorphism in V via (unenriched) Yoneda for V0. The ∆I -weighted colimits are called
conical colimits. In particular, V-coequalizers and V-coproducts are conical colimits.

Theorem 3.3.26. Let C be a V-category. TFAE:

1. The V-category C is cocomplete.

2. For each small V-category A and each V-functor K : A → C, the functor C(K,−) : C →
[Aop,V] has a left V-adjoint −�AK : [Aop,V]→ C.

3. The category C has all weighted colimits.

Proof. In the example we saw 3⇒ 1 and clearly 2⇒ 3 by definition. It remains to show 1⇒ 2.
By the parametrized Yoneda lemma, we need to show that

W 7→ [Aop,V](W,C(K,−))

is representable for every W ∈ [Aop,V]. Every such W is canonically a V-coequalizer of free
objects (recall that [Aop,V] = T -Alg). Let B ⊆ [Aop,V] be the subcategory of the W such that
[Aop,V](W,C(K,−)) is representable. By assumption, B is closed under copowers, V-coproducts
and V-coequalizers. Thus it suffices to show that if W is a free T -algebra, then W ∈ B. Using
copowers and coproducts, we can reduce the case W = T (VA)A∈A to T (IA) where

(IA) =

{
∅, if B 6= A

I, if B = A

Therefore
(VA)A∈A =

∐
VA� IA ∈

∏
A∈A

V

so that we are reduced to checking T (IA) ∈ B. But T (IA) = A(−, A) by definition of T . Here
we have

[Aop,V](T (IA),C(K,−)) ∼=
∏

V(IA, (C(KB,−))B∈A) ∼= C(KA,−)

so this is corepresented by KA ∈ C.

Remark 3.3.27. We may extract a formula from the proof above. Then we find

A(−, A)�AK = KA

and

W �AK = coeq

∐
A,B

(WB ⊗A(A,B))�KA⇒
∐
A

WA⊗KA
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Corollary 3.3.28. For all small A, [A,V] has weighted colimits.

Example 3.3.29. Take V = Cat and K a (cocomplete) 2-category. In this case, [A,K] is
the 2-category with 0-cells the 2-functors, 1-cells the 2-natural transformations and 2-cells the
so-called modifications.

Definition 3.3.30. Let α, β : F ⇒ G be 2-natural transformations between 2-functors A→ K.
A modification ϕ : αV β is a collection of 2-cells (ϕA : αA ⇒ βA)A∈A in K, such that

FA GA

FB GB

Ff βA

αA

Gf

βB

ϕA

=

FA GA

FB GB

Ff

αA

Gf

βB

αB

ϕB

holds for every f : A→ B

Take A = {f0, f1 : 0 ⇒ 1} and W : A → Cat sending 0 to the terminal category ∗, 1 to the
category [1] = {0→ 1} and such that Wfi = ini : ∗ → [1] are the inclusions of the domain and
the target in the walking arrow. The W -weighted limit represents [A,Cat](W,C(c, F−)) for
F : A→ C. This amounts to a morphism c

c−→ F0 and a 2-cell

F0

c F1

F0

γ

Ff0

c

c

Ff1

as objects, while morphisms are modifications. A priori, these are two natural transformations

Wi C(c, F−)

(d,δ)

(c,γ)

ϕi

but ϕi is determined by ϕ0, so we are left with a single equation.

F0 F1

c F0

δϕ0

Ff0

d

d

c

Ff1 =

c F0

F0 F1

c

d

γ

c

Ff0

Ff1

ϕ0

The limit is called the inserter of Ff0 and Ff1, since it freely inserts a 2-cell. If we set W (1) =
“walking isomorphism” we get an iso-inserter, that is an invertible inserter. As in the unenriched
case, we can define V-dense functors and density presentations.

Definition 3.3.31. Let A be a small V-category. A V-functor K : A → C is called dense if
C(K,−) : C → [Aop,V] is full and faithful. A weighted colimit in C is called K-absolute if it is
preserved by C(K,−) that is, the canonical morphism

W �A C(K,F−)
C(K,−)−−−−−→ C(K,W �A F )

is an isomorphism.
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Definition 3.3.32. If K is full and faithful, a V-density presentation is a collection of weights
and diagrams {Wγ : Aop

γ → V, Fγ : Aγ → C}γ∈Γ such that Wγ �Aγ Fγ exists, is K-absolute and
C is the closure of {KA | A ∈ A} under colimits in Γ.

Proposition 3.3.33. If a full and faithful functor K : A → C has a V-density presentation,
then it is V-dense.

Proof. Consider the full subcategory B ⊆ C spanned by the objects B s.t.

C(K,−)B,C : C(B,C)→ [Aop,V](C(K−, B),C(K−, C))

is an iso in V for all c ∈ C. By definition ofK-absoluteness, B is closed underK-absolute colimits,
both sides preserve K-absolute colimits, i.e. C(−, c) and [Aop,V]((C(K,−),C(K, c)) : C → Vop

preserve them. It only remains to show that KA ∈ B ∀A ∈ A. To see this one needs to observe
that the diagram

C(KA,C) [Aop,V](C(K−,KA),C(K−, C))

[Aop,V](A(−, A),C(K−, C))

C (K,−)

∼=
Yoneda

is commutative1. The claim follows since we assumed that C(K−,KA) ∼= A(−, A).

Example 3.3.34. I ∈ V is always dense, but rarely Set-dense.

Definition 3.3.35. Given a small V-category A and V-functors K : A→ C and F : A→ D, we
say that the pointwise Kan extenstion of F along K exists if the V-functor

[Aop,V]

(
C(K,−),C(F,−)

)
: Cop ×D→ V

is representable in the first variable. By parameterized Yoneda, we get a functor C → D

which we denote by LanK F . In other words LanK F = (− �A F ) ◦ C(K,−) and LanK F (c) =
C(K−, c)�A F .

Proposition 3.3.36. If the pointwise Kan extension exists, then it is in particular a left Kan
extension in V-CAT, i.e.

A C

D

K

F
LanK F

is the universal natural transformation in this diagram. Also we have LanK a K∗.

Proof. We need to show that
LanK F ⇒ G

F ⇒ GK

By definition we have LanK F = (−� F ) ◦ C(K,−) so by (partial) adjunction we have

LanK F → G

C(K,−)→ C(F,−) ◦G

1Compare this result with faithfulness of [Aop,V] →
∏

V
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Both C(K,−) and C(F,−) are defined by lifting T -action on collections (T the presheaf monad)

so this amounts to giving a collection of V-natural transformations C(Ka,−)
αa,−
==⇒ D(Fa,G−)

compatible with the action, i.e.

A(a′, a)⊗ C(Ka, c) A(a′, a)⊗D(Fa,G−)

C(Ka′, c) D(Fa′, G−)

1⊗αa,−

action

αa′,−

By weak Yoneda, the αa,− are uniquely determined by αa,Ka(idKa) =: β : Fa → GKa. In fact
(again by Yoneda) we have

αa,− = C(Ka,−)
GKa,−−−−−→ D(GKa,−)

D(βa,G−)−−−−−−→ D(Fa,G−)

Plugging this into the square above and precomposing with

1⊗ idKa : A(a, a′)→ A(a, a′)⊗ C(Ka,Ka)

we find that β is V-natural, i.e. the αa,− are compatible with the V-action as above.

Lemma 3.3.37. If the pointwise left Kan extension exists and K is fully faithful, then the unit

A C

D

K

F
LanK F

ηF

is a natural isomorphism.

Proof. One checks that the unit is

A D

C [Aop,V]

F

K Y

HomA(K,−)

−�AF

∼=

i.e. a composition of natural isomorphisms since K is fully faithful.

Definition 3.3.38. Give a class of weights Φ we write Φ -Cocts0[C,D] for the category of V-
functors which preserve Φ-colimits and V natural transformations, i.e.

W �A FD
F−→ F (W �A D)

is an isomorphism for all W : Aop → V and D : A→ C.

Theorem 3.3.39. Let Φ be a class of weights, K : A → C full and faithful. Suppose all Φ-
colimits are K-absolute and K has a density presentation using Φ-colimits. Then for every Φ-
cocomplete V-category D the pointwise left Kan extension LanK F exists and is Φ-cocontinuous.
Moreover, the functors

LanK : V-CAT(A,D)→ Φ -Cocts0(C,D) and K∗ : Φ -Cocts0(C,D)→ V-CAT(A,D)

are inverse equivalences.
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Proof. The full subcategory B ⊆ C of objects B such that C(K−, B)�AF exists is closed under
Φ-colimits, since they are K-absolute and contains representables {KA | A ∈ A}. Therefore
B = C and so LanK F exists and is clearly Φ-cocontinuous, since

(−�A F ) ◦ C(K,−)

preserves Φ-colimits.
For the second statement we already know that the unit is an isomorphism, so we only need

to show that the right adjoint K∗ is conservative. The same colimit-closure argument shows
this is the case, hence ε is an iso by the triangle identities.

Corollary 3.3.40. Let A be a small V-category, Φ a class of weights and Φ(A) ⊆ [Aop,V] the
closure of the representables under Φ-colimits. Then Φ(A) is the free Φ-cocomplete V-category
on A, i.e. we have

V-CAT
∼−−−→

LanY
Φ -Cocts0(Φ(A),D)

for any Φ-cocomplete D.

Proof. As in the unenriched case, one shows that there is a V-natural isomorphism C(Y,−) ∼=
id[Aop,V] (check on collections), so all colimits are Y -absolute.

We are now ready to define locally presentable V-categories. For this it is convenient to assume
that V0 is locally finitely presentable. This ensures that all filtered colimits in V0 behave “the
same” as in Set.

Definition 3.3.41. Let C be a V-category. An object c ∈ C is called κ-presentable, if C(c,−) : C→
V preserves conical κ-filtered colimits. Note that this is equivalent to saying that C(c,−) : C0 →
V0 is κ-accessible.

Note that this imposes a condition even for C = V. An object V ∈ V is finitely presentable
if and only if [V,−] preserves filtered colimits, or equivalently if and only if − ⊗ V preserves
finitely presentable objects.

So, finitely presentable in V is equivalent to finitely presentable in V0 if (V0)fp is closed under
finite ⊗-products.

Definition 3.3.42. V is locally finitely presentable as a closed category if (V)0 is closed under
finite ⊗-products.

Example 3.3.43. Set,Cat, sSet,ModR,dgModR are all locally finitely presentable (lfp) as
a closed category. We call such V a locally finitely presentable cosmos.

Proposition 3.3.44. If V is an lfp cosmos and C ha copowers, then c ∈ C is κ-presentable if
and only if V � c ∈ C0 is κ-presentable for each V ∈ Vfp.

Proof. By definition of copowers we have in particular, that

C0(V � c,−) ∼= V0(V,C(c,−))

So, if c is κ-presentable in C, then C0(V � c,−) preserves κ-filtered colimits for any V ∈ Vfp.
Conversely the V0(V,−) define the full and faithful embedding V0 → [Vop

fp ,Set] which pre-
serves filtered colimits so they jointly detect κ-filtered colimits.



3.3. Weighted colimits and enriched presheaf categories 67

Definition 3.3.45. Let V be an lfp cosmos. Then a V-category C is called locally κ-presentable
if it has a small subcategory A ⊆ C consisting of κ-presentable objects in C, C is cocomplete
and the inclusion K : A→ C has a density presentation consisting of conical κ-filtered colimits.

Theorem 3.3.46. Let V an lfp cosmos. For an V-category C, the following are equivalent:

1) C is locally κ-presentable.

2) C is a reflective subcategory of [Aop,V] for some small A such that the inclusion preserves
κ-filtered colimits.

3) The underlying category C0 is locally κ-presentable, C has copowers and (C0)κ is closed
under V �− for all V ∈ Vfp.

Proof.

1)⇒ 2) Use the V-dense K : A→ C from the definition. The functor

C(K,−) : C→ [Aop,V]

is fully faithful and preserves κ-filtered colimits.

2)⇒ 3) Clear from the above proposition.

3)⇒ 1) Consider A the full subcategory on (C0)κ. By assumption (C0)κ consists of κ-presentable
objects in C. Every object C ∈ C0 is a filtered colimit of (C0)κ/C. Since we have powers, these
are actually V-colimits.

Corollary 3.3.47. Let C be a locally κ-presentable V-category and T a κ-accessible V-monad
on C. Then T -Alg is a locally κ-presentable V-category.

Proof. We have powers in T -Alg since C has powers. It also has copowers. Indeed, this is clear
for free algebras since left adjoints preserve copowers. Using coequalizers we find that all objects
have copowers. The category (T -Alg)0

∼= T0 -Alg is locally κ-presentable by previous results.
We only need to check that (T0 -Alg)κ is closed under V �− for all V ∈ (V0)fp = Vfp. This is
again trivial for free algebras on κ-presentable objects A ∈ Cκ. The general case follows since
(T0 -Alg)κ is closed under coequalizers.

Corollary 3.3.48. If C is a locally κ-presentable V-category and A is small, then [A,C] is a
locally κ-presentable V-category. In particular, [Cκ,C] is locally κ-presentable. Moreover, since
[Cκ,C]0 = V -CAT(Cκ,C), this category is locally κ-presentable (as a Set-category). Thus,
V -CATκ(C,C), the category of κ-accessible V-endofunctors and V-natural transformations, is
locally κ-presentable.

Proof. V -CATκ(C,C) = Φ -Cocts0(C,C), where Φ is the class of conical filtered weights. The
category of functors with a small domain is the category of algebras for a cocontinuous, in
particular κ-accessible, V-monad on

∏
A∈A C.

Theorem 3.3.49. Let V be a lfp cosmos, C a locally presentable V-category. Then

V -Mndκ(C)
forget−−−→ V -CATκ(C,C)

is κ-accessible and monadic. Moreover, the inclusion V -Mndκ(C) → V -Mnd(C) preserves col-
imits.
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Proof. The composition functor −◦− preserves κ-filtered colimits in each variable, so that the
endofunctor F 7→ F ◦F is κ-accessible. Thus we can write down a presentation for the “monad
for κ-accessible monads”. The second part follows again as in the unenriched case: we are lifting

the monoidal adjunction V -CATκ(C,C) V -CAT(C,C)

a

to an adjunction of categories of

monoids, as in the following diagram

V -CATκ(C,C) V -CAT(C,C)

[Cκ,C]0
K∗

∼= LanK

a
a

hence the inclusion of κ-accessible monoids is a left adjoint.

Remark 3.3.50. These are “just” ordinary categories. In general V -Mndκ(C) in not a V-
category in a natural way.

Corollary 3.3.51. Take V a lfp cosmos and C locally κ-presentable. The functor

V -Mndκ(C)op (−) -Alg−−−−−→ V -CAT/C

sends colimits to limits.

Proof. We combine the above with the semantics-structure adjunction K′ /C Mnd(C)opa

for arbitrary 2-categories with Eilenberg-Mac Lane objects (do it as an exercise). Since C is
complete, RanF F exists for all F with small domain. Therefore2 V -Cat/C ⊆ V -CAT′/C and
thus V -CAT′/C ↪→ V -CAT/C preserves limits.

We will apply this to the case V = Cat, that is to the theory of 2-monads. For this, we would
like to have lots of examples of locally presentable 2-categories.

Theorem 3.3.52. If V is a locally κ-presentable symmetric monoidal closed category and (V0)κ
is closed under finite ⊗, then V -Cat is locally κ-presentable and (V -Cat)κ is closed under finite
⊗ (this construction is stable under enrichment).

Remark 3.3.53. It follows that V -Cat is a lfp 2-category whenever V is a lfp cosmos. We
need to check that for A ∈ (V -Cat0)fp, C ∈ (Cat0)fp, we have C�A ∈ (V -Cat)fp. This
immediately reduces to the case C = [1]. We will prove by inspection that F∗[1] ∈ V -Cat is
finitely presentable only if C�A = F∗ C⊗A.

We prove the theorem in two steps. First we prove that V -Cat is finitary monadic over
V -Grph and then that V -Grph is locally κ-presentable.

Recall that a V-matrix on a set S is an object of V - Mat(S) =
∏
S×S V = VS×S and a V-graph

is a pair (S,M) of a set S and M ∈ VS×S . A morphism of V-graphs is a pair composed of a
morphism f : S → T and a collection (fa,b : M(a, b)→ N(fa, fb)) ⇐⇒ f−,− : M → f∗N . If V
is symmetric monoidal closed and cocomplete, this is equivalent to a morphism f∗M → N in
VT×T .

2V -Cat/C is a generating set for V -CAT′/C, so if it’s a limit from its perspective it still is in V -Cat/C .
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Theorem 3.3.54. If V is symmetric monoidal closed and locally κ-presentable, then

U : V -Cat→ V -Grph

A 7→ (Ob(A),A)

is monadic and preserves sifted colimits.

Proof. We first prove the claim about sifted colimits. Recall that we have a tensor product
on VS×S s.t. Mon(VS×S) = V -Cat(S), the category of V-categories with object set S and
morphisms identity-on-objects V-functors. Moreover, f : S → T induces an adjunction

Mon(VS×S) Mon(VT×T )

f∗

f∗

a
where

f∗(A)x,y =
∑

{(a,b) : fa=x,fb=y}

A(a, b) ∈ V .

Note that Mon(VS×S) is a locally κ-presentable category because the tensor of matrices preserves
filtered colimits in each variable. In fact, Mon(VS×S)→ VS×S is monadic.

The left adjoint of U sends (S,M) to the free monoid for the matrix tensor product, that is it
doesn’t change the set of objects (check it as an exercise). The functor U is conservative since
a V-functor is an isomorphism if and only if it is bijective on objects and ∀a, b fa,b : A(a, b)→
B(fa, fb) is an isomorphism in V if and only if it is an isomorphism of V-graphs. To apply Beck,
we only need that certain reflexive coequalizers are preserved. This follows from the claim on
sifted colimits. We can compute colimits of V-categories (Si,Ai), where Si = Ob(Ai), as follows.

First, let S = colimSi with universal cocone ιi : Si → S in Set. Then (ιi)∗Ai defines a
diagonal of the same shape in Mon(VS×S). Let A = colimi(ιi)∗Ai. Then colim(Si,Ai) = (S,A).
The same recipe works for colimits of V-graphs colim(Si,Mi) = (S, colimVS×S (ιi)∗Mi). It follows
that U : V -Cat → V -Grph preserves all the colimits that are preserved by each forgetful
functor Mon(VS×S)→ VS×S , S ∈ Set. Now we use the fact that the tensor product of matrices
preserves sifted colimits in each variable. Hence sifted colimits of monoids are preserved by

Mon(VS×S)
forget−−−→ VS×S .

Remark 3.3.55. We don’t really need locally κ-presentable here: any cosmos V suffices by
Kelly’s “transfinite construction”.

It remains to show that V -Graph is locally κ-presentable if V is. We consider the V-graph
(2, V̄ ), for V ∈ V denoted as follows: The set is given by {0, 1} and V̄ (i, j) = V if (i, j) = (0, 1)
and V̄ (i, j) = ∅ else. Note that this is a strong generator of V -Graph, if we let V sum
through objects of Vκ. Then to give a (2, V̄ ) → (S,M) is equivalent to picking x, y ∈ S and
ϕ : V →M(x, y).

Proposition 3.3.56. Let V be locally κ-presentable. Then for all V ∈ (V0)κ the object (2, V̄ )
is κ-presentable in V-graph.

Proof. Consider a κ-filtered colimit (X,M) = colimi(Xi,Mi) in V -Graph with universal cocone
ιi : Xi → X in Set. Then we have M = colim(ιi)∗Mi in VX×X . We have to show, that
V -Graph((2, V̄ ),−) preserves this κ-filtered colimit. That is for any f : (2, V̄ ) → (X,M), we
find a factorisation
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(Xi,Mi)

(2, V̄ ) (X,M)

f ′

f

and any two such morphisms, which become equal in the colimit become already equal at a
common stage in the diagram. Recall that

(ιi)∗Mi(x, y) =
∑

{ (a,b) : ιi(a)=x,ιi(b)=y }

Mi(a, b)

Our f : (2, V̄ )→ (X,M) is given by the elements x, y ∈ X and ϕ : V → (colim(ιi)∗)(x, y). Both
x, y are in the image of ιi : Xi → X for some i. Since V is κ-presentable ϕ factors through one
of the inclusions (ιi)∗Mi(x, y)→ colim(ιi)∗Mi(x, y). Thus we obtain a morphism

ϕ : V →
∑

{ (a,b) : ιi(a)=x,ιi(b)=y }

Mi(a, b)

Since V is κ-presentable, there exist sets A ⊂ ι−1
i (x) and B ⊂ ι−1

i (y) with | A |, | B |≺ κ, such
that ϕ factors through

∑
(a,b)∈A×BMi(a, b). But the diagram Xi → X is a κ-filtered colimit

diagram in Set. So we can finde a stage j

Xi Xj

X

Xϕ

such that Xϕ(A) = {x0} and Xϕ(B) = {y0}. Now by picking x0, y0, we get the desired lift
f ′ : (2, V̄ )→ (Xj ,Mj). It remains to check, that given a other commutative square

(Xi,Mi)

(2, V̄ ) (Xk,Mk) (X,M)

(Xj ,Mj)

we find a stage k and dashed arrows making the inner square commute. Without loss of
generality we can assume i = j and that 0 and 1 go to the same element in Xi (since 2 is finitely
presentable in Set). The remaining data are morphisms

V Mi(a, b)
ϕ

ψ

such that they become equal when comparing with (Xi,Mi)→ (X,M).

Mi(a, b)
∑
{ (a,b) : ιi(a)=x,ιi(b)=y }Mi(a, b)

V colim(ιi)∗Mi(x, y)

Mi(a, b)
∑
{ (a,b) : ιi(a)=x,ιi(b)=y }Mi(a, b)

ϕ

ψ
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But the colimit in the target is a filtered colimit in V and V is κ-presentable. So they factor
through some (ιj)∗Mi → colim. This j gives the desired diagram by looking at composition of
maps in V -Graph.

This now proves the theorem, that V -Cat is locally κ-presentable if V is so. It remains to
check, that if I ∈ (V0)κ and (V0)κ is closed under −⊗−, then the same is true in V -Cat.

Proposition 3.3.57. Under the above assumptions, I ∈ V -Cat is locally finitely presentable
and for V,W ∈ (V0)κ, R[V ] ⊗ R[W ] is locally κ-presentable, where R[V ] is the free V -Cat on
(2, V̄ ).

Proof. The tensor product has four objects { (i, j) : i, j ∈ {0, 1} } and looks like

(0, 0) (0, 1)

(1, 0) (1, 1)

V

W W

V

Now let B[V,W ] be the pushout

I R[V ]

R[W ] B[V,W ]

Then one checks, that R[V ]⊗ R[W ] is precisely the pushout

R[V ⊗W ] B[V,W ]

B[W,V ] R[V ]⊗ R[W ]

So since R[V ] and R[W ] are free on V,W the are locally κ-presentable. It only remains to show,
that I is locally κ-presentable. But we have V -Cat(I,−) ∼= Ob(−) : V -Cat → Set so this
preserves all small colimits.

Example 3.3.58. 2-Cat, simplicial categories and dg-categories form locally finitely pre-
sentable cosmoi.

Remark 3.3.59. Since F∗[1] = R[I] we get V -Cat is a locally κ-presentable 2-category.

3.4 Two-dimensional monad theory

In the case V = Cat the (large) categories V -CAT(K,L) are again 2-categories (modifications
can be defined as for small K). We denote them by [K,L]. Moreover, we have 2-functors
[L,M]×[K,L]→ [K,M]. Since Cat is cartesian, we also have a diagonal [K,K]→ [K,K]×[K,K]
given by the assignment F 7→ (F, F ). This allows us to present the 2-monad for κ-accessible
2-monads on a locally κ-presentable 2-cat K. This way we can study 2-monads by studying the
algebras of 2-monads. Moreover 2-Cat/K is a 2-category and (−) -Alg : 2-Mndκ(K)→ 2-Cat/K
preserves all weighted limits (sends Cat-weighted colimits to limits). This can be seen via the
following construction. Given a c ∈ K we have the 2-monad 〈c, c〉 : K→ K, which satisfies the
property, that giving T → 〈c, c〉 is the same as defining a T -algebra structure on c. Now given
a 1-cell f : c→ d, we can form the pullback
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{f, f} 〈c, c〉

〈d, d〉 〈c, d〉

Then given a 2-cell σ : f ⇒ g : c→ d we form the pullback

‖σ, σ‖ {f, f}

{g, g} {f, g}

By construction giving T → ‖σ, σ‖ amounts to lifting σ to a 2-cell in T -Alg

(A,α) (B, β)

f

g

σ

Example 3.4.1. We can present the 2-monad on V -Cat for a monoidal (small) V-category by
starting with the endo-2-functor given by the assignment A 7→ A⊗A. F -Alg then has objects
(A,A⊗A→ A) and the use inserts to get

(A⊗A)⊗A A⊗A

A

A⊗(A⊗A) A⊗A

m⊗1

∼= α

m

1⊗m

m

and then equifier for the pentagon and also add limits etc. The resulting category T -Alg has
the right objects, but the 1-cells preserve the structure strictly.

Definition 3.4.2. Let T be a 2-monad on a 2-category K. A lax T -morphism between T -
algebras (A, a), (B, b) is a pair (f, f̄) together with a 1-cell f : A→ B and a 2-cell

TA TB

A B

a

Tf

b
f̄

f

such that

T 2A T 2B

TA TB

A B

T 2f

Ta Tb
T f̄

Tf

a b
f̄

f

=

T 2A T 2B

TA TB

A B

T 2f

µA µB

Tf

a b
f̄

f
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and

A B

TA TB

A B

f

ηA ηB

Tf

a b
f̄

f

= idf

We call (f, f̄) a pseudo T -morphism if f̄ is invertible. A 2-cell of lax or pseudo-morphisms
(f, f̄)⇒ (g, ḡ) is a 2-cell σ : f ⇒ g in K such that

TA TB

A B

Tf

Tg

a b
ḡ

Tσ

g

=

TA TB

A B

Tf

a b
f̄

f

g

σ

Finally a colax morphism is one with the direction of f̄ reversed (also called oplax ).

Example 3.4.3. 1. The pseudo/lax morphisms for the 2-monad for monoidal V-categories
are precisely the strong monoidal/lax monoidal V-functors. 2-cells are the monoidal 2-
cells.

2. For the 2-monad of presheaves T :
∏

Ob(A) Cat →
∏

Ob(A) Cat on a small 2-category A

the pseudo-T -morphisms are the pseudo-natural transformations, the lax morphisms are
the lax-natural transformations between (strict) 2-functors. One way to prove this is to
use the corresponding pseudo/lax version of {f, f}

{f, f}l 〈B,B〉

〈A,A〉 〈A,B〉

the comma object with the universal 2-cell an iso for {f, f}p for a complete 2-category and
check that there are 2-monads such that 2-monad morphisms T → {f, f}l are precisely
lax T -morphisms (f, f̄) : (A, a)→ (B, b).

We thus have 2-categories and 2-functors

T -Algl

T -Algs T -Algp

T -Algc

K
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Where T -Alg denotes the category of algebras of a Cat-enriched monad, s stands for strict, p
for pseudo, l for lax and c for colax. As we saw in the examples we often care about T -Algl
or T -Algp but we know a lot about T -Algs. For example T -Algs is a locally presentable 2-
category if K is such and T is accessible. In this case the inclusions T -Algs → T -Algp,l have left
adjoint 2-functors. These are sometimes denoted by (−)′, Q or Ql. It turns out, that T -Algp
is biequivalent to a certain subcategory of T -Algs consisting of the flexible algebras (i.e. those
such that the counit Q(A.a) → (A, a) is an equivalence in T -Algs). This can for example be
used to show that T -Algp is bicategorically complete and cocomplete if K is a locally presentable
2-category and T is accessible.
To summarize: The philosophy is that enriched things are easy, weak things are hard, so use
strictly enriched categories to study weakly enriched categories, to study weak things. To
illustrate this, we consider one definition of monads and algebras in higher categories. Before
we do that, we need to monad in 2-categories. We have shown that 2-Cat is a locally finitely
presentable cosmos. This means in particular that we can talk about the “free 2-category” with
a monad M:
Start with a single object ∗, a 1-cell t : ∗ → ∗ and two 2-cells µ : t2 ⇒ t, η : id∗ ⇒ t and impose
the monad axioms. Then a 2-functor M→ K is precisely given by pairs of an object C ∈ Ob(K)
and a monad t : C → C. Since M clearly has a single object, it is simply a monoid in Cat.

Proposition 3.4.4. The monoid (M(∗, ∗), ◦) is isomorphic to (∆+,+) the category of finite
posets and + the ordinal sum (i.e. the join).

Proof. Do this using string diagrams: The string diagrams for M are the following. 1-cells for
tn for some integer are

t , t t , t t t

and so on. 2-cells are:

µ
t t

t

η

t

Now from

· = ·

we get that there is a unique 2-cell
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· · ·

·

t

t

t

t

From the defining isomorphism K(X, [W,F ]) ∼= [Aop,Cat](W,K(X,F−)) we see that [−, F ]
sends colimits to limits. From the isomorphism [A(a,−), F ] ∼= F (a) it follows that we have to
compute the corresponding colimit of the Yoneda diagram Aop → [A,Cat]. So W ∼= Y �AW .
For this we need to compute the Kleisli object of the monad in [∆+,Cat]. If it really is a
weighted colimit, this would be computed pointwise in Cat. So we need to compute the Kleisli
object of + [0] : ∆+ → ∆+ in Cat.

By an exercise, the collection of objects of the category Kl(−+ [0]) is {[n] | n ≥ −1} and the
morphisms [m]→ [n] are morphisms [m]→ [n] + [0] in ∆+.

—– Insert pic —–
We write ∆∞ for this category.
The structure of ∆+-module is given by ordinal —– Insert pic —–
W is ∆∞ with this ∆+-action. By construction, we get [[∆+,Cat]](W,K(X, (C, t))) ∼=

t -Act(X).
One can also see this more directly. Indeed, a morphism of ∆+-modules out ofW is completely

determined by where it sends —– Insert pic —–, that is a 1-cell g : X → C and a 2-cell ρ : tg ⇒ g.

Corollary 3.4.5. Any complete 2-category has EM-objects and they are preserved by right
adjoint 2-functors (horrible name, what about right 2-adjoints?)

Proof. EM-objects are weighted limits.

As observed by Riehl-Verity, this can be useed to define and study monads of (∞, n)-
categories. In many cases we have simplicial categories of (∞, n)-categories with good proper-
ties, like the simplicial category of quasi-categories qCat.

We have a 2-functor τ : sSet→ Cat which is left adjoint to the nerve and preserves products,
hence it is strong monoidal. We get then τ∗ : sSet-Cat → 2-Cat. This defines the homoropy
2-Cat of a simplicial category, that is qCat, and can be used to define categorical structures.
In this context, adjoints are those which are mapped to adjoints under τ∗ or something like that
(wtf does this mean?).

The nerve functor N : Cat → sSet is also strong monoidal and defines N∗ : 2-Cat →
sSet-Cat.

Definition 3.4.6. A homotopy-coherent monad on an object C in a simplicial category C is a
simplicial functor N∗∆+ → C, ∗ 7→ C, that is a morphism of simplicial monoids N∆+ → C(c, c).

The object of homotopy-coherent algebras of such a monad is the N∆∞-weighted limit of
(C, t).

This concept is highly non-trivial and we refer to [RV16].
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3.5 Outlook

In many monoidal categories V we have a notion of weak equivalence, for example:

• Cat: equivalence;

• Top: homotopy equivalence;

• Ch: quasi-isomorphism.

There are further classes of maps, which allow one to talk about cellular constructions, homo-
topies and lifting of homotopies called fibrations and cofibrations. A model structure on V is a
choice of such classes W, F, C subject to some axioms. If this is compatible with the monoidal
structure, we can also talk about V-model categories, like:

• V = Top, sSet homotopy theory;

• V = Sp (spectra in the sense of algebraic topology)  stable homotopy theory;

• V = Ch(A) homological algebra, where A is an abelian category (often Ab);

• V = Cat 2-category theory (instead of plain Cat-enriched category theory);

• V = sSetJoyal, Segal categories, Rezk’s complete Segal spaces, complicial sets, etc.  
higher category theory.

Many of the techniques discussed are also useful to study and construct model categories.
For example, one of their axioms is the existence of factorizations of morphisms f : X → Y as
X → E

∼−→ Y , where the first map is a cofibration and the second one an acyclic fibration. To
construct these, one often uses transfinite constructions similar to Kelly’s proper small object
argument. If one actually uses Kelly’s construction, one gets particularly nice factorizations
systems called algebraic weak factorization systems (Garner). These actually form a pair of a
comonad and a monad on the arrow category C[1], which are particularly useful if C is locally
presentable and the model category is combinatorial.

For further reading, we refer to the following:

• C = Cat and 2-monad theory: [Lac10];

• C = sSet,Top,Ch: [Hov07];

• use of these ideas in higher category theory: Riehl-Verity’s papers and their book [RV18].
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