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2-Monads and Their 2-Categories of Algebras

0.1 Introduction

These notes will focus on 2-dimensional monad theory, which can be viewed as the study of
algebraic structures on 2-categories. Like in the one-dimensional case, after defining a 2-monad
we concern ourselves with the categories of algebras it defines, however the higher dimension
allows to relax the definitions and observe how different coherence conditions lead to different
(and generally less well-behaved) objects.

One may ask why we are keen to better understand 2-monads. One answer is that, similarly
to the 1-dimensional case, this allows us to better understand other 2-categories, perhaps with
additional structure (i.e. monoidal, braided, some kinds of limits, etc) by relating them to
2-categories of algebras.

We now start recalling some relevant definitions and facts which we will need later on.
In order to carry out our project we shall work with V-cosmos and presentability conditions.

Definition 0.1.1. A cosmos V is a complete, cocomplete symmetric monoidal closed category.

Definition 0.1.2. An object c in a V-category C is κ-presentable if C(c,−) : C → V preserves
κ-filtered colimits. This is equivalent to saying that the functor C(c,−) : C0 → V0 is κ-accessible,
where C0 and V0 are the underlying categories.

Theorem 0.1.3. Let V be a lfp cosmos. Then V-Cat is a lfp cosmos and a lfp 2-category.

By studying monads in this setting we achieve a great level of generality since our results will
not depend on the underlying enrichment, thus unifying many contexts.

But what is a 2-monad?

Definition 0.1.4. A 2-monad is a monad in the 2-category 2-CAT of locally small 2-categories,
2-functors and (strict) 2-natural transformations.

We will often construct them using presentations, that is via colimit constructions and free
2-monads on 2-endofunctors. This is achieved through the following results.

Theorem 0.1.5. Let V be a lfp cosmos, C a locally κ-presentable V-category. Then the forgetful
functor

V−Mndκ(C)→ V−CATκ(C,C)

is monadic. Moreover, it preserves colimits.

Corollary 0.1.6. In the above situation, the functor

(−) -Alg : V−Mndκ(C)→ V−CAT/C

sends colimits to limits.

1
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Remark 0.1.7. In general, V − Mndκ(C) is not a V-category. This is because monads are
monoids in a monoidal V-category of endofunctors, but monoids in general do not define a
V-category: for example, consider Mon(Ab) = Ring, which is not even additive.

This has to do with the non-existence of a “diagonal” V-functor V→ V⊗ V. In particular, if
V is cartesian then this problem does not arise and indeed for V = Cat we expect the monadic
adjunction 0.1.5 to be enriched.

Unfortunately, we can’t apply the theorem above to show the corollary. Instead, we use it to
give a presentation of a 2-monad whose algebras are 2-monads with rank κ.

Given a monoidal 2-category M (i.e. the associator (A⊗B)⊗C → A⊗ (B⊗C) is 2-natural,
satisfies the pentagon axioms, etc), we have a 2-category Mon(M) of monoids (M,µ : M ⊗M →
M,η : I →M) in M with 1-cells the monoid morphisms and 2-cells the 2-cells α : f ⇒ g : M → N
in M s.t.

M ⊗M M N = M ⊗M N ⊗N N

f

g

µM µN

g⊗g

f⊗f

α α⊗α ,

I M N = idηN

f

g

ηM
α

hold.
If − ⊗ − preserves κ-filtered colimits in each variable, then the 2-functors FM = M ⊗M ,

GM = (M ⊗M) ⊗M + M + M are κ-accessible and we have two natural ways to go from
F -algebras to G-algebras.

The coequalizer of the resulting pair of maps on the free monads TG ⇒ TF gives us a
presentation of a 2-monad T as a coequalizer. It has T -Alg ∼= Mon(M) by construction if M is
locally κ-presentable as a 2-category.

Let K be a locally κ-presentable 2-category, i.e. V−Cat and specifically Cat, and let M =
[K,K]κ. Then the category of κ-accessible endofunctors on K, that is M, is itself locally κ-
presentable.

Notice that the composition preserves κ-filtered colimits in each varible. Indeed, for F ∗ it’s
clear and for F∗ is too since F is κ-accessible.

Monoids in M are 2-monads!
To show that 2−Mndκ(K)→ 2−Mnd(K) preserves colimits we need the following proposition.

Proposition 0.1.8. Let F be a strong monoidal 2-adjoint M→M′. Then the right 2-adjoint
inherits a lax monoidal structure s.t. unit and counit are monoidal. Both 2-functors lift to the
2-categories of monoids, so Mon(F ) : Mon(M)→ Mon(M′) is a left 2-adjoint.

Proof. Exercise.

We can now prove what we stated earlier.

Theorem 0.1.9. Let K be a locally κ-presentable 2-category. Then the forgetful 2-functor

2−Mndκ(K)→ [K,K]κ

is 2-monadic and κ-accessible. In particular, 2−Mndκ(K) is a locally κ-presentable 2-category.
Moreover, the inclusion

2−Mndκ(K)→ 2−Mnd(K)

preserves colimits and in fact it is a left adjoint.
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Proof. We have 2 − Mndκ(K) = Mon([K,K]κ), so the above discussion shows that there is a
κ-accessible 2-monad on [K,K]κ with T -Alg ∼= 2−Mndκ(K).

For the second part, recall that left Kan extensions along the inclusion J : Kκ → K of κ-
presentable objects gives an equivalence of 2-categories [Kκ,K] → [K,K]κ (this is true for a
general lfp cosmos —-missing bit, it was 11:23—-).

It follows that the inclusion [K,K]κ → [K,K] is, up to equivalence, given by the left Kan
extension along J . (Check and finish this proof)

This will allows us to write presentations of 2-monads for 2-categories such as R-linear cate-
gories, simplicial categories, etc, which has two important consequences: firstly, when construct-
ing a 2-monad from free monads we may also use weighted colimits; secondly, since 2-monads
with rank κ are algebras for a 2-monad with rank κ, any general theorem we prove about
algebras gives a corresponding 2-monad with rank κ.

As we mentioned earlier, we may be interested in less strict definitions compared to the 1-
dimensional case. Here we start considering them by specifying new classes of morphisms of
algebras.

Definition 0.1.10. Let T be a 2-monad, (A, a), (B, b) two T -algebras.
A lax T -morphism is a pair (f, f) where f : A→ B is a 1-cell and f : b · Tf → f · a is a 2-cell

such that the equations

T 2A TA A = T 2A TA A

T 2B TB B T 2B TB B

a

f

b

TfT 2f

µB

µA

f

b

fTf

Tb

a

T 2f

Ta

fTf ,

A TA A = idf

B TB B

fTff

ηB b

aηA

f

hold.
A lax T -morphism is a pseudo T -morphism if f is an isomorphism and it is strict if f = id.
A colax or oplax T -morphism is a lax T -morphism with the direction of f reversed and the

equations adapted.
A 2-cell between lax/pseudo/strict T -morphisms α : (f, f)⇒ (g, g) is a 2-cell α : f ⇒ g s.t.

TA A = TA A

TB B TB B

gf

b

a

Tf g

b

a

Tααf g

We write T -AlgS , T -AlgP and T -AlgL for the 2-categories of T -algebras, strict/pseudo/lax
T -morphisms and 2-cells as above.

(Other missing bit)
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0.2 Presentations of 2-Monads

We have defined two 2-categories T -AlgP , T -AlgL of pseudo and lax morphisms respectively
for a 2-monad T . We want to understand how to describe them when T is given by a presen-
tation.

We remember that in a complete 2-category K we have a 2-endofunctor < A,B > : K→ K for
each pair of objects A, B in K given by the right Kan extension of B : ∗ → K along A : ∗ → K.
In particular, < A,B > C = BK(C,A) and, if A = B, this defines a 2-monad, just like in the
1-dimensional case. Moreover, the 2-monad morphisms T ⇒< A,B > are in natural bijection
with T -algebra structures on A.

Now we can form for any pair of 1-cells f, g : A→ B in K the (iso???) comma object

{f, g}p/l < A,A >

< B,B > < A,B >

d <A,f>

c

<g,B>

λ

in [K,K]. If f = g, then this is again a 2-monad and 2-monad morphisms T → {f, f}p/l
correspond to (pseudo) lax T -morphism structures on the 1-cell f . More precisely, such a
morphism corresponds to a T -algebra structure on A and one on B, namely c ·γ and d ·γ and a
(invertible) 2-cell f : Tf ·b⇒ f ·a corresponding to λ ·γ s.t. (f, f) is a lax (pseudo) T -morphism.

[ρ, ρ] {f, f}

{g, g}l {f, g}l

{f,ρ}l

{ρ,g}l

y

which inherits a 2-monad structure for which a 2-monad morphism T ⇒ [ρ, ρ] exists if and only
if ρ is a T -transformation between (f, f) and (g, g).

These facts can be used to identify T -AlgP and T -AlgS is T is given as a (weighted) colimit
of free monads.

Example 0.2.1. Let’s consider the 2-monad of monads in a monoidal 2-category M as above,
i.e. locally κ-presentable with −⊗− preserving κ-filtered colimits in each variable. As we saw,
we define FM = M ⊗M + I, GM = (M ⊗M)⊗M +M +M . Let’s write T (F ), T (G) for the
free 2-monads on these 2-endofunctors.

There is a natural 2-functor T (F ) -AlgS → T (G) -AlgS sending (M,p, u) to (M,p · (p⊗ u), p ·
(u ⊗M)) and there is another two functor mapping it to (M,p · (M ⊗ p), idM , idM ). These
correspond to 2-monad morphisms and the 2-monad for monoids is exactly its coequalizer.

A relevant question: what would happen if we considered lax/pseudo T -morphisms in this
case? The simple existence of {f, f}l tells us that this is some kind of equalizer, however there
is a problem: what is T (F ) -Algl and what does the 2-functor T (F ) -Algl → T (G) -Algl look
like?

From T (F )  {f, f}l we get a morphism T → T (F ) → {f, f}l, which is however hard to
analyze. This requires a bit of a detour.

Theorem 0.2.2 (doctrinal adjunction). Let (f, f) : (A, a) → (B, b) be a pseudo T -morphism
s.t. f is a left adjoint to u : B → A with unit η and counit ε. Then there exists a unique lax
T -morphism structure u on u s.t. η and ε are T -transformations.
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Proof. We shall prove uniqueness. For this, we observe that the equality

TA A TA A

B = TB B

TA A TA A

a

f

u
a

a

a

f

u

b

Tf

Tu

Tη

b

f

η

implies that (is the f inverted???)

TA TB B = TA TB

TA A A B

A

uTu

Tf b

a

u

f

ba

Tf

uTη f
−1

η

and

TB B = draw

TA A

b

a

uTu
u

by the triangle identities for Tf a Tu.
For existance, (u, u) is a lax T -morphism with the desired properties by exercise 13.4 from

the previous course.

We now study a kind of limit existing in T -Algl.

Definition 0.2.3. Given a 2-category K and an arrow f : A → B in it, it colax limit is the
universal 2-cell

C

A B

qp

f

λ

in K. This means that for each a : X → A, b : X → B and α : f · a → b there exists a unique
1-cell t : X → C s.t.

X = X

A B C

A B

ba

f
qp

f

tα

λ

holds. The 2-dimensional universal property asserts that for all a′ : A → A, b′ : X → B,
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α′ : b′ → f · a′ and 2-cells γ : a⇒ a′, δ : b⇒ b′ with

X X

B = A

A B

a′ a

b

f

a′

f

bb′
γ

α
α′ δ

there exists a unique 2-cell φ : t⇒ t′ s.t. p · φ = γ, q · φ = δ.
Notice that this is precisely the comma object

id ↓ f B

A B
f

in K. This is a weighted limit in the enriched sense, hence defined via an isomorphism of
categories and not just an equivalence.

The pseudo limit of f is the analogous construction with λ and α invertible. The lax limit
has the direction of λ reversed.

We can now state the following.

Proposition 0.2.4. Let K be a 2-category with colax limits of arrows and T a 2-monad on it.
For any 1-cell (f, f) : (A, a) (B, b) in T -Algl there exists a unique T -algebra structure on the
colax limit of f s.t. the projections are strict 2-morphisms. The 2-cell

C

A B

qp

f

λ

is a T -transformation and (G,λ) is a colax limit in T -Algl. Moreover, p and q jointly detect
strict morphisms, that is a 1-cell t : X → C is strict if and only if pt and qt are strict. In
particular, the colax limit of (f, f) exists and it is strictly presented by the forgetful 2-functor
Ul : T -Algl → K.

Proof. There exists a unique 1-cell c : TC → C s.t. the equation

TA A A

TC = TC C

TB B B
Tq

b

fTf

a

Tp

f

q

p

c
Tλ f λ

holds. Note that the direction of λ is important! Since p · c = a · Tp, q · c = b · Tq, so if we
can show that (C, c) is a T -algebra then p and q are strict T -morphisms. Similarly, the above
equation then says that λ is a T -transformation.
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Applying T to the above equation and whiskering the result on the right with f gives

T 2A TA A TA A

T 2C = T 2C TC

T 2B TB B TB B
T 2q

Tb

TfT 2f

Ta

T 2p

b

f

a

f

b

Tf

a

Tp

Tq

Tc
T 2λ Tf f f

Tλ

Notice that the diagram on the right reduces to

A

T 2C TC C

B

Tc c

q

p

f
λ

and applying the axioms for a lax T-morphism and the 2-naturality of µ : T 2 ⇒ T , we find that
the left hand side above is

T 2A TA A

T 2C

T 2B TB B

TA A

= T 2C TC

TB B

A

= T 2C TC C

B

T 2q

a

f

Tb

Tf

b

T 2f

Ta

T 2p

f

a

b

Tq

Tp

Tf
µC

f

q

p

cµC

f
T 2λ Tf

Tλ f

λ

so from the 1-dimensional universal property it follows that c · µC = c · Tc. The unit axiom
is left as an exercise. To show that (C, c) is a T -algebra, p, q are strict morphisms and λ is a



0.2. Presentations of 2-Monads 8

T -transformation we have to check the universal properties. Consider a 2-cell

X

A B

hg

f

α

in T -Algl. This is a 2-cell α : h ⇒ fg in K subject to the axiom for a T -transformation. In
particular, there exists a unique 1-cell t : X → C s.t. α = λt. The composite λ ·c ·Tt corresponds
to the 2-cell

TA A

TX

TB B

Tg

Th

a

b

fTf
f̄Tα

and the composite λ · t · x corresponds to the 2-cell

A

TX X

B

x

g

h

f

in K. Since α is a 2-cell in T -Algl, comparing the first of these with ḡ : a · Tg ⇒ g · x, we get
the 2-cell α · x compared with h̄ : b · Th ⇒ h · x. In other words, ḡ and h̄ satisfy the defining
equations for 2-cells in the 2-dimensional universal property of the colax limit of f . Thus there
exists a unique 2-cell t̄ : c ·Tt⇒ t ·x s.t. p · t̄ = ḡ and q · t̄ = h̄. If we can show that (t, t̄) is a lax
T -morphism, then these last equations show p · (t, t̄) = (g, ḡ) and q · (t, t̄) = (h, h̄) as 1-cells in
T -Algl. Conversely, the equations also show that (t, t̄) is unique. As a diagram, the equation
pt̄ = ḡ looks like

X X

TX C A = TX A

TC TA

TA

x t

T t c

Tp
Tg

g

p

a

t̄

x g

Tg a

ḡ
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in K. Applying T to this equation and composing with Tg we get

X

TX C X

T 2X TC A = TX A

T 2C TA T 2X TA

T 2A T 2A .

Tx

x t

T t

T 2t

T c

c
p

Tp

g

T 2p

Ta

T t̄

t̄

T 2g

Tx

x g

T 2g

T ḡ

a Tg

Ta

a

ḡ

Using the fact that (g, ḡ) is a lax T -morphism and the 2-naturality of µ : T 2 ⇒ T we find that
the above 2-cell is equal to

X X

TX A TX C A

T 2X TC TA =from
pt̄=ḡ T 2X TC

T 2C T 2A T 2C .

gx

Tg

aT t

Tp

µX

T 2t
µC µA

µX

x

T 2t µC

c

t

T t

p
ḡ

T 2p

t̄

A similar argument shows that the equality

X B X B

TX C = TX C

T 2X TC T 2X TC

T 2C T 2C

Tx

x t

T t
c

T 2t T c

q

µX

x t

T t c

T 2t µC

q

T t̄

t̄ t̄

holds. From the uniqueness part of the 2-dimensional universal property it follows that the
equation

T 2X TX X T 2X TX X

T 2C TC C T 2C TC C

Tx x

tT t

c

T 2t

T c

µX

T 2t

µC

Tt

x

t

c

=
T z̄ z̄

holds. The unit axiom is again left as an exercise. It remains to check the 2-dimensional
universal property, so consider γ, δ 2-cells in T -Algl s.t.

X X

B = B

A A

gg′

h

f

h

h′

f

g′α
γ

δ

α′
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holds. The data of a T -transformation is just a 2-cell in K which is compared and whiskered as
in K. From the universal property of ϕ in K it follows that there is a unique 2-cell ϕ : t ⇒ t′

with pϕ = γ, qϕ = δ. It only remains to check that ϕ is a T -transformation, i.e. that the
equation

TX X TX X

TC C TC C

x

Tt

c

t′t
=

x

t′
Tt′

c

T tt̄ ϕ Tϕ t̄′

holds. After whiskering with p : C → A, the equation becomes

TX X TX X

TA A TA A

x

Tg

a

g′

=
Tg′

x

a

g′
g Tgḡ γ Tγ ḡ′

which holds since γ is a T -transformation. The equation also holds after whiskering with q since
δ is a T -transformation. Therefore ϕ is indeed a T -transformation, which concludes the proof
of the 2-dimensional universal property. Finally, if q and h are strict T -morphisms, then the
equation p · t̄ = ḡ and q · t̄ = h̄ implies that t̄ = 1, i.e. (t, t̄) is a strict T -morphism.

In any 2-category K with colax limits of arrows, we get for each f : A → B with colax limit
(Cf , pf , qf , X) a unique 1-cell rf : A→ Cf s.t.

A A

= Cf

A B A B
f

f

pf qf

f

rf

λ

holds. In particular, qfrf = f and pfrf = idf .

Proposition 0.2.5. In the above situation, there exists a unique 2-cell ηf : idCf ⇒ rf · pf s.t.
pfηf = 1, qfηf = λ. This 2-cell exhibits rf as right adjoint of pf with colimit the identity
pfrf = idA.

Proof. Taking γ = 1pf : pf ⇒ pfrfpf and δ = λ : qf ⇒ fpf = qfrfpf we have

A Cf Cf

= A

Cf A B A Bpf

pf qf

f

pf

f

f

qf

pf

rf

λ

λ
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Cf

A

= Cf

A B

pf

rf

pf

f

qf

f

qf

λ

λ

so there exists a unique 2-cell ηf : idCf ⇒ rf ·pf with pf ·ηf = 1, qfηf = λ by the 2-dimensional
universal property. It remains to show that the triangle identities hold. Since ε = 1 these become
pfηf = 1 and ηfrf = 1. So one of these we already checked. For the second it suffices to check
that it holds after whiskering with pf and ηf , where we get pfηfrf = 1 and qfηfrf = λrf = 1
(by def of rf ) and pfηf = 1 by definition.

A right adjoint r with counit the identity is sometimes called a RARI (Right Adjoint Right
Inverse). The corresponding left adjoint is called a LALI (Left Adjoint Left Inverse). The dual
concepts (with unit the identity) are called RALI and LARI. For T -Algp we can work instead
with pseudolimits of arrows, which is the universal

Pf

A B.

pf qf

f

∼

Proposition 0.2.6. The forgetful 2-functor Up : T -Algp → K creates pseudolimits of arrows.

Proof. The same construction1 as in the case of T -Algl works, we just have to observe that t̄ is
an isomorphism, which follows from pt̄ = ḡ and qt̄ = h̄ and the fact that those are isomorphisms,
since f and g are pseudomorphisms and p, q jointly detect isos.

Proposition 0.2.7. If K has pseudolimits of arrows and (f, f̄) : A B is a pseudo T -morphism,
then there exists a unique rf : A Pf such that

A

A Pf

A B A B

f

f

=

rf

pf

f

qf

f

∼λ

and an invertible ηf : 1⇒ rfpf s.t. (rf , pf , ηf , 1) is an adjoint equivalence.

Proof. Existence of ηf and triangle identities follow as before. Moreover, ηf is invertible since
both pfηf = 1 and qfηf = λ are invertible and pf , qf jointly detect isos.

1In part pf , qf strict!
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In particular, we can replace (up to equivalence) a pseudo T -morphism by a strict T -morphism

Pf

A B

rf

f

qf

'

of path-spaces. With this at hand we can prove the following theorem, which is useful for
constructing 2-monads via presentations. Specifically, for identifying the pseudo and lax T -
morphisms of such 2-monads.

Theorem 0.2.8. Let S and T be 2-monads on a 2-category with colax limits of arrows. Let
Fs : T -Algs → S -Algs be a (strict) 2-functor such that the triangle

T -Algs S -Algs

K
Ut

Fs

Us

commutes. Then there exists a unique 2-functor Fl : T -Algl → S -Algl s.t. the diagram

T -Algs S -Algs

T -Algl S -Algl

K

Fs

J J

Fl

Ul Ul

commutes.

Proof. For the existence note that Fs is induced by a (unique) 2-monad morphism ϕ : S → T
s.t. the semantics 1-functor

(−) -Alg : 2-Mnd(K)op → 2-Cat/K

is full and faithful. This can be used to define Fl as follows. We send

TA A

TB B

a

Tf

b

f
f̄

to
SA TA A

SB TB B

ϕA

Sf

ϕB

Tf

a

b

f
f̄

and we let Fl be the identity on 2-cells. The interesting part is the converse. Since the inclusions
J are bijective on objects, Fl is uniquely determined on 0-cells. The two 2-functors Ul : T -Alg→
K and Ul : S -Algl → K are both injective on 2-cells, so Fl is also uniquely determined on 2-cells.
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It remains to show uniqueness on 1-cells. So let (f, f̄) : (A, a)  (B, b) be a 1-cell in T -Algl.
Since we have colax limits of arrows in K, we can factor (f, f̄) as follows

A

A Cf

A B A B.

f

f

=

rf

pf

f

qf

f

λ

It follows that Fl(f, f̄) = Fl(qf ) ◦ Fl(rf ). Since the square in the diagram commutes, Fl(qf ) =
Fs(qf ), so it only remains to show that Fl(rf ) is uniquely determined. We also know that
(rf , pf , ηf , 1) is an adjunction, so since Fl is a 2-functor it follows that (Fl(rf ), Fl(pf ), Fl(ηf ), 1)
is an adjunction in S -Algs. Since pf is also strict, we have Fl(pf ) = Fs(pf ). To summarize:
Fl(rf ) is a lax T -morphism structure on UlFl(rf ) = Ul(rf ) so that ηf and 1 make it a right
adjoint of Fl(pf ) in S -Algl. From the uniqueness part of doctrinal adjunction it follows that
Fl(rf ) is uniquely determined by Fs(pf ), ηf , 1.

Remark 0.2.9. There is an analogous statement for T -Algp using the pseudolimit of arrows
(assuming they exist in K). Why is this useful? When dealing with monads given by presenta-
tions, we will (by construction) have a 2-functor Fs : T (G) -Algs → T (F ) -Algs, so a correspond-
ing monad morphism T (F ) → T (G), whenever T (F ), T (G) are free 2-monads on endofunctors
F,G. So this corresponds to a 2-natural F → T (G), but it is in general hard to describe this
explicitly. If we want to figure out what happens on lax morphisms from the definition, we
would need to understand this instead. Usually it is easy to guess a 2-functor Fl that makes
everything commute. This assumes that we have a description of T (F ) -Algl purely in terms of
F , which is indeed possible as we will see next.

Definition 0.2.10. Let F : K→ K be a 2-functor. An F -algebra is a pair (A, a) with a : FA→
A a 1-cell in K with no axioms. Strict morphisms f : (A, a)→ (B, b) are 1-cells f : A→ B s.t.
bFf = fa. A lax F -morphism is a pair (f, f̄) of a 1-cell f : A→ B and a 2-cell

FA A

FB B

a

Ff

b

f
f̄

subject to no axioms. An F -transformation ρ : (f, f̄) ⇒ (g, ḡ) is a 2-cell ρ : f ⇒ g s.t. the
equation

FA A FA A

FB B FB B

a

Ff

b

gf
=

a

g
Fg

b

Fff̄ ρ Fρ

holds. We write F -Alg for the resulting 2-category. A pseudo F -morphism is an (f, f̄) s.t. f̄ is
invertible and we write F -Algp for the corresponding 2-category.

As in the 1-dimensional case, we can relate F -algebras and T (F )-algebras.
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Proposition 0.2.11. Let K be a locally presentable 2-category, F a κ-accessible 2-endofunctor
on K, T (F ) the free κ-accessible monad on F with universal 2-natural transformation ψ : F →
T (F ). We can then construct isomorphisms of categories

ψ∗ : T (F ) -AlgL → F -AlgL

ψ∗ : T (F ) -AlgP → F -AlgP

by whiskering with ψ.

Proof. It is clear that FA
ψa−→ T (F )A

a−→ A is a F -algebra for any T (F )-algebra (A, a) and, for
any lax T (T )-morphism (f, f), the 2-cell

FA T (F )A A

FB T (F )B B
b

f

a

T (F )fFf

ψb

ψa

f

is a lax F -morphism. Since composition of 1-cells in both F -AlgL and T (F ) -AlgL is defined by
attaching these 2-cells, this defines a functor on the underlying 1-categories.

Since ψ is 2-natural, the axiom for a T (F )-transformation turns into the axiom for a F -
transformation, hence we can extend this to a 2-functor by acting as the identity on 2-cells.

It remains to show that this defines an isomorphism of 2-categories, or equivalently that it is
a bijection on 0, 1 and 2-cells, which follows from the universal property of ψ.

Since ψ∗ preserves the underlying 0, 1 and 2-cells we only need to check the bijection for a fixed
underlying cell. In this case, the claim follows from the existence of the 2-monads < A,A >,
{f, f}L and [ρ, ρ]. Namely, whiskering with ψ gives a bijection between 2-monad morphisms
T (F ) →< A,A > and mere 2-natural transformations F ⇒< A,A >. By adjunction, this
corresponds to a : FA → A, subject to no axioms. The bijection on 1 and 2-cells follows
analogously, as proof concerning T (F ) -AlgP and F -AlgP .

We can use this to identify T -AlgL when T is given via a presentation through the following
procedure. We start with various (accessible) 2-endofunctors F,G . . . on K and we construct
2-functors F -AlgS → G -AlgS , etc. These are induced by monad morphisms T (G)→ T (F ) and
if we want to know what happens on lax and pseudo morphisms we use 0.2.8.

Taking limits, we obtain new categories which are of the form T -AlgS for the corresponding
category of monads. We can then iterate this by considering 2-functors T -AlgL →W -AlgS for
a 2-endofunctor W on K.

To do this we need one more ingredient in order to identify the 2-category (W �D) -AlgS/L/P
for any small diagram D : Aop → 2Mndκ(K) and any weight W : Aop → Cat.

For T -AlgL, this comes from the corresponding limit of 2-categories {W,D -AlgL}. To show
it we first need to turn (−) -AlgL into a 2-functor.

C D

G

F

α

s.t.

C D K = idUC

G

F

UD

α
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We now need to extend (−) -AlgL to a 2-functor.
Recall that a monad modification α : φ V ψ between monad morphisms is a modification

subject to two axioms.
The datum of a modification of 2-monads consists of a 2-cell αA for each 0-cell A ∈ K and

the axioms state that the equations

SSA STA TTA A = SSA SA TA

SφA

SψA

φTA

ψTA

µTA µSA

φA

ψA

αTASαA αA

A SA TA = 1ηTA

ηSA

φA

ψA

αA

hold, plus the modification axioms.
We want to finish extending (−) -AlgL to a 2-functor 2−Mndκ(K)coop → 2−CAT/K, where

the target has the 2-cells specified above, hence we have to define a 2-natural transformation
α∗ : ψ∗ ⇒ φ∗ s.t. ULα

∗ = 1. Giving a 2-natural transformation means giving a 1-cell in S -AlgL
for each 0-cell in T -AlgL, i.e. for each T -algebra we have to specify a lax S-morphism.

We do it as follows: given (A, a) ∈ T -AlgL, we let (α∗)(A,a) be the lax S-morphism

SA TA A

SA TA A

a

a

ψA

φA

αA

with the identity as underlying 1-cell.

Proposition 0.2.12. The assignment α 7→ α∗ is well-defined and thus (−) -AlgL gives a 2-
functor

2−Mndκ(K)coop → 2−CAT/K

Proof. There are a few things to check. We leave some as exercises.
We start with one of the lax morphism axioms. We want to show that

(1) SSA STA SA TA A

SSA STA SA TA A

=

(2) SSA SA TA A

SSA SA TA A

a

a

ψA

φA

SψA

SφA Sa

Sa

µSA ψA a

aψAµSA

αASαA

αA
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Using a modification axiom,

(1) = SSA STA TTA TA A

SSA STA TTA TA A

TA

a

a

Ta

Ta

SψA

SφA Sa

Sa

µa a

SαA αTA

and now we apply a monad modification axiom to find that this is equal to

SSA SA TA Aa

φA

ψA

µSA αA ,

which we can rewrite as (2). We leave the second axiom as an exercise.
Next we check the 2-naturality of α∗. For the 1-cell axiom, we need to consider a 1-cell

(f, f : (A, a)→ (B, b) in T -AlgL. Then we have

• SA TA A SA TA A

• = SA TA A = SB TB B

• SB TB B

SA TA A •

= SB TB B = •

SB TB B •

α∗
(A,a)

φ∗
(f,f)

Sf Tf f

a

a

bφB

φA

ψA

fTf

b

aψA

Sf ψB

φB

f

b

b

a

Tf

φB

ψB

ψA

Sf ψ∗
(f,f)

α∗
(B,b)

f

f

αB

which shows the 1-cell part of the 2-naturality condition. We leave the 2-cell part of 2-naturality
as an exercise.

By construction, we have ULα∗(A,a) = 1A, so this really is a 2-cell in 2-CAT/K. This shows
that this assignment extends to a 2-functor if we can prove that composition and whiskering
operations for monad modifications turn into the corresponding operations in 2-CAT/K, which
follows from the definition of composition and whiskering for modifications.

Remark 0.2.13. For T -Algp we only have 2-naturality for invertible modifications.

Next we want to check that (−) -Algl turns weighted colimits into weighted limits. For this
we use the following characterization of 〈A,A〉, {f, f}l and [ρ, ρ].

Proposition 0.2.14. Let K be complete and A ∈ K. Then there is an isomorphism of categories

Mnd(K)co(T, 〈A,A〉)→ 2-CAT/K(1
A−→ K, T -Algl

Ul−→ K)

which is 2-natural in T .
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Proposition 0.2.15. The 2-category 2-CAT/K is complete as a Cat-enriched category.

Proof. For completeness we need conical limits and powers by 2 = {0→ 1}. We start with the
latter. It is given by the pullback in 2-CAT

2 t U C2

K K2

V
y

U2

pidq

where pidq classifies the identity 2-cell on idK. Note that there is a 2-dimensional aspect to
this, which follows from the 2-dimensional universal property of C2. We also have copowers by

2 given by C×2 pr−→ C
U−→ K, so we only need to check the 1-dimensional universal property for

conical limits. Conical limits are classical: products are given by “wide” pullbacks∏
Ui

Ci Cj

K

Ui

. . .

Uj

while equalizer are computed as in 2-CAT.

Now we have a 2-functor between complete 2-categories and we want to show that it preserves
limits. The strategy is as follows.

Let C,D be complete V-categories, F : C → D a V-functor, D : A → C a diagram and
W : A → V a weight. We get the comparison morphism F̄ : F{W,D} → {W, F D} in D. We
want to show that this is an iso. We will construct a new functor G : D → E s.t. both G
and GF preserve weighted limits and G reflects isomorphisms. Then the comparison morphism

ḠF : GF{W,D}
∼=−→ {W, GF} factors as GF{W,D} G(F̄ )−−−→ G{W, F D} Ḡ−→∼= {W

′GF D} so G(F̄ )

is invertible hence also F̄ is an isomorphism.
We want to construct such a functor G in our setting. For this we use the constructions
〈A,A〉, {f, f}l and [ρ, ρ].

Proposition 0.2.16. Let K be complete. Then there is an isomorphism of categories, 2-natural
in T .

2-Mnd(K)co(T, 〈A,A〉)→ 2-CAT/K(1
A−→ K, T -Algl

Ul−→ K)

Proof. From Exercise 1.3 we know that there is a natural bijection between monad morphisms
T → 〈A,A〉 and T - -Alg structures a : TA→ A on A. This gives the bijection on objects. Since
this is constructed from the general theory of strict actions of strict monoidal categories, we
know from Exercise 1.2 that monad modifications

T 〈A,A〉

a2

a1

ϕ
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correspond to lax T -morphisms (idA, ϕ) : (A, a2)→ (A, a1) (note the reversal of direction, omit-
ted in the Exercise). This corresponds precisely to a 2-cell

1 T -Algl

K

(A,a2)

(A,a1)

A Ul

(id,ϕ)

in 2-CAT/K.

Proposition 0.2.17. Let K be a complete 2-category and f : A→ B a 1-cell in K. Then there
is an isomorphism of categories

2-Mnd(K)co(T, {f, f}l)→ 2-CAT/K(2
f−→ K, T -Algl

Ul−→ K)

which is 2-natural in T .

Proof. We already know this bijection on objects. From Exercise 1.4 we know that this bijection
arises from the strict action [K,K]×Colax[2,K]→ Colax[2,K] of 2-categories. Using Exercise
1.2 here we find that monad modifications

T {f, f}l

f̄2

f̄1

ξ

correspond to lax T -morphisms in Colax[2,K], which are the identity on objects, that is to
pairs of 2-cells ξA, ξB s.t.

TA A TA A

TB B TB B

a2

a1

b1

f =

a2

b2

b1

fTf Tf

f̄1

f̄2

ξB

ξA

holds and (idA, ξA) : (A, a2)→ (A, a1), (idB, ξB) : (B, b2)→ (B, b1) are lax T -morphisms (exer-
cise). This is precisely a 2-cell

2 T -Algl

K

(f,f̄2)

(f,f̄1)

f Ul

in 2-CAT/K.
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Proposition 0.2.18. If K is complete and A B

g

f

ρ 2-cell in K, there is an iso of categories

2-Mnd(K)co(T, [ρ, ρ]) −→ 2-CAT/K

(
0 1

ρ−−→ K, T -Algl
Ul−→ K

)
that is 2-natural in T .

Proof. One uses the action of [K,K] on

Colax

[
0 1 ,K

]
,

which has objects the 2-cells A B

g

f

ρ , morphisms the quadruples (a, φ, ψ, b) such that

A A′ A A′

B B′ B B′

a

gf

b

g′ =

a

b

g′f ′
f

ρ

ψ

ρ′ϕ

holds. The 2-cells are pairs of 2-cells subject to two axioms spelled out in the exercises. The
construction is then analogous to the previous two propositions. That is we have to analyze
what exactly a T -algebra in

Colax

[
0 1 ,K

]
is and what a lax T -morphism is, whose 1-cell part is the identity.

The existence of adjoints is due to the completeness assumption. With this at hand we can
now prove that (−) -Algl turns colimits into limits.

Theorem 0.2.19. Let K be a locally κ-presentable 2-category. Then the 2-functor

(−) -Algl : 2-Mndκ(K)coop → 2-CAT/K

turns weighted colimits into limits.

Proof. We already know that the inclusion 2-Mndκ(K)→ 2-Mnd(K) preserves weighted colim-
its, so it suffices to prove the claim for diagrams in the latter 2-category, which happen to have a
colimit. So let D : A→ 2-Mnd(K)co be a diagram, W : Aop → CAT a weight such that W�AD
exists in 2-Mnd(K)co. We have a comparison morphism L : W�AD -Algl → {W, D -Algl} in

2-CAT/K. The represented 2-functor 2-CAT/K(1
A−→ K,−) preserves weighted limits (as

homs do) and the composite 2-CAT/K(1
A−→ K,−) ◦ (−) -Algl also preserves weighted limits,

since it is represented by 〈A,A〉 by the first Proposition above. So in the commuting diagram

2-CAT/K(1
A−→ K,W�AD -Algl) 2-CAT/K(1

A−→ K, {W, D -Algl})

{W, 2-CAT/K(1
A−→ K, D -Algl)}

2-CAT/K(1
A−→K,L)

comparison

∼=
comparison

∼=
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both arrows labelled ”comparison” are isomorphisms (compare with the discussion above for

F = (−) -Algl, G = 2-CAT/K(1
A−→ K,−)). Upshot: for each A ∈ K, 2-CAT/K(1

A−→ K, L) is

an isomorphism. Using the same argument applied to (0→ 1)
f−→ K and

0 1
ρ−−→ K

and the propositions about {f, f}l and [ρ, ρ] we find that for all 1-cells f and all 2-cells ρ
the 2-functors 2-CAT/K(f, L) and 2-CAT/K(ρ, L) are isomorphisms. Since the 2-functors
2-CAT/K(A,−), 2-CAT/K(f,−) and 2-CAT/K(ρ,−) jointly detect isomorphisms, we find
that L is an isomorphism.

We can do the same construction for (−) -Algp and (−) -Algs. On the other hand, once we
know that a 2-category is of the form T -Algl it has subcategories T -Algp and T -Algs. We
would like to be able to identify these in terms of the categories Di -Algp, Di -Algs when forming
limits. To do this we will use the 2-monads {f, f}p and {f, f}s. We have 2-monads morphisms
{f, f}s → {f, f}p → {f, f}l defined by the requirement that the 2-cell f̄ is either an identity
or an isomorphism. A factorization of T → {f, f}l through one of these is unique, if it exists,
which it does if and only if the lax morphism corresponding to ϕ is strict resp. pseudo.

Lemma 0.2.20. Given a diagram D : A → 2 − Mndκ(K) and a weight W : Aop → Cat, let

Ki : Di →W �AD jointly “codetect” identities and isomorphisms. A 2-cell W �A D Tα

is an identity (an isomorphism) if and only if each αKi is. Then a lax W �AD-morphism (f, f)
is pseudo (strict) if and only if (Ki)

∗(f, f) is.

Proof. This follows from the existence of the classifiers {f, f}S , {f, f}P , which are defined by
the universal requirement that a certain 2-cell is an identity (an isomorphism).

Lemma 0.2.21. The morphisms
∐
i∈A
∐
w∈Wi

Di → W �A D jointly codetect isomorphisms
and identities.

Proof. Applying 2 −Mndκ(−T ), this translates to a statement about weighted limits in Cat,
namely that for any D′ : Aop → Cat the functor

{W,D′} → Πi∈A{Wi, D
′
i} → Πi∈AΠw∈WiDi

detects isomorphisms and identities, where the first is the canonical map we get from the
characterization of weighted limits in terms of powers, products and equalizers and the second
is a product of functors {Wi, D

′
i} = Fun(Wi, D

′
i)→ Fun(ObWi, D

′
i). The latter functors detect

isomorphisms and identities because a natural transformation is an isomorphism (an identity)
if and only if all of its components are.

The first functor is the equalizer in the standard presentation of {W,D′} in Cat, hence a (not
necessarily full) inclusion of subcategories, thus it detects identities (using injectivity on objects).
It also detects isomorphisms: if Ff = Gf and f is an isomorphism then (Ff)−1 = (Gf)−1, so
the inverse of an isomorphism lies in the equalizer.

Remark 0.2.22. In practice once can do much better than the morphism in the above lemma:
for example, for the cocomma object

A B

C D

f

,
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the canonical arrow B+C → D codetects identities and isomorphisms. Identifying such a subset
of objects with this property is easy once the 2-dimensional universal property is understood.

Summarizing, a lax W �A D-morphism consists of certain 2-cells involving the categories
Di -AlgL and it will be pseudo (strict) if and only if all of the constituents are.

We now have almost all the ingredients necessary to identify T -AlgS/P/L when T is given by
a presentation.

Example 0.2.23. Consider a locally κ-presentable monoidal 2-category K such that for all
objects x both x⊗− and −⊗ x preserve κ-filtered colimits. Monoidal here means exactly the
1-categorical definition, replacing functors and natural transformations with their 2-dimensional
counterparts. Examples of this are [K,K]κ with ⊗ = ◦, V−Cat for a lfp cosmos V.

We now present a complete characterization of the 2-category of monoids on K.
Let F : K→ K be the 2-endofunctor M 7→M⊗M+I. Then T -AlgL has as objects the triples

(M,p : M ⊗M → M,u : I → M) subject to no axioms; morphisms (M,p, u) → (M ′, p′, u′) are
1-cells f : M →M ′ with 2-cells

M ⊗M + I M

M ′ ⊗M ′ + I M ′
p′+u′

p+u

ff⊗f+I
f

subject to no axioms. This amounts to a pair of 2-cells f2 : p′ ·f⊗f ⇒ f ·p and f0 : u′ → f ·u by
the universal property of the coproduct. The 2-cells (f, f2, f0)⇒ (g, g2, g0) are 2-cells φ : f ⇒ g
s.t.

M ⊗M M = M ⊗M M

M ′ ⊗M ′ M ′ M ′ ⊗M ′ M ′

p

p′

gg⊗gf⊗f
f⊗f

f g

p

p′

φ⊗φ g2 φf2

and
M M

I = I

M ′ M ′

u

u′

gf g

u′

u

φf0 g0

hold.
Let G : K → K be the 2-endofunctor GM = M ⊗ (M ⊗ M) + M + M . The 2-category

G -AlgL has objects (M,pα : M ⊗ (M ⊗M)→M,pλ : M →M,pρ : M →M) and 1-cells are the
quadruples (f, fα : p′α · (f ⊗ (f ⊗ f))⇒ f · pα, fλ : p′λ · f ⇒ f · pλ, fρ : p′ρ · f ⇒ f · pρ). The 2-cells
are 2-cells φ : f ⇒ g s.t.

M ⊗ (M ⊗M) M = M ⊗ (M ⊗M) M

M ′ ⊗ (M ′ ⊗M ′) M ′ M ′ ⊗ (M ′ ⊗M ′) M ′

f⊗(f⊗f) g⊗(g⊗g) g

pα

p′α

f⊗(f⊗f)
f g

pα

p′α

φ⊗(φ⊗φ) gα φfα

and the other axioms hold. The pseudo/strict versions of these are the ones where f0, f2

(respectively fα, fλ, fρ) are isomorphisms/identities.
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Next we construct two 2-functors ψi : F -AlgL → G -AlgL, which send (M,p, u) to (M,p ·M ⊗
p, p · u⊗ ·λ−1

M , p ·M ⊗ u · ρ−1
M ) and (M,p · p⊗M · αM,M,M , idM , idM ) respectively.

On 1-cells, ψ1 sends (f, f2, f0) to

M ⊗ (M ⊗M) M ⊗M M

M ′ ⊗ (M ′ ⊗M ′) M ′ ⊗M ′ M ′

f⊗(f⊗f) ff⊗f

p

p′M ′⊗p′

M⊗p

f2f⊗f2 ,

M I ⊗M M ⊗M M

M ′ I ⊗M ′ M ′ ⊗M ′ M ′

ff⊗f

p

p′u′⊗M ′

u⊗M

I⊗f

λ−1
M′

λ−1
M

f
f2f0⊗f

and

M M ⊗ I M ⊗M M

M ′ M ′ ⊗ I M ′ ⊗M ′ M ′

f

p′

ρ−1
M

f

M ′⊗u′

I⊗f

ρ−1
M′

f⊗f

pM⊗u

f2f⊗f0

The 2-functor ψ2 sends (f, f2, f0) to

M ⊗ (M ⊗M) (M ⊗M)⊗M M ⊗M M

M ′ ⊗ (M ′ ⊗M ′) (M ′ ⊗M ′)⊗M ′ M ′ ⊗M ′ M ′

f⊗(f⊗f) (f⊗f)⊗f f⊗f f

p′⊗M ′

p⊗M

p′

pαM,M,M

αM′,M′,M′

f2f2⊗f ,

1f and 1f .
On 2-cells both ψ1 and ψ2 act as the identity. The axioms hold because the α, λ, ρ parts are

built from f0 and f2.
From the construction we see that the ψi restrict to 2-functors F -AlgS → G -AlgS and these

restrictions are induced by 2-monad morphisms ψ̂i : T (G) → T (F ), the free 2-monads on G
and F respectively, by full faithfullness of the 1-functor (−) -AlgS . In other words, ψi = (ψ̂i)

∗

is a strict morphism. Since there is a unique extension of (ψ̂i)
∗ to a 2-functor on T (F ) -AlgL

compatible with UL, we have ψi = (ψ̂i)
∗ on all of F -AlgL

∼= T (F ) -AlgL.
Now let Mon be the coequalizer of ψ̂1 and ψ̂2 in 2 − Mndκ(K). Then Mon -AlgL is the

coequalizer of the ψi, so the objects are precisely the monoids in K, the 1-cells are the triples
(f, f2, f0) subject to three axioms, namely that the 2-cells depicted above are equal. The 2-cell
axioms remain the same: compatibility with f2 and f0. The pseudo/strict morphisms are the
ones where f2, f0 are invertible/identities, since T (F )→ Mon codetects isomorphisms/identities.

We can spell out what this means for κ-accessible monads.
Lax morphisms (T, µT , ηT ) → (S, µS , ηS) are triples (f, f2, f0) where f : T → S is 2-natural

and f0, f2 are modifications

T T 2

idK

S S2

ηT

ηS

µS

µT

f2f
f0 f2
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such that –diagrams– hold.

T 3 T 2 T T 3 T 2 T

TS2 TS = T 2S TS

S3 S2 S S3 S2 S

f

µSSµS

TµS

TµT

Tf

µT

fS2

Tf2

fS

f

µSµSS

µTS

µTT µT

Tf

fSf2S

T 2f

f2

Tf2

f2S

f2 ,

T 2 T

T ST = 1f

S S2 S

fT

f

µSηSS

f Sf

µT

ηTT

ηST

f2f0

and

T T 2 T

S ST = 1f

S2 S

fT

f

µS

Sf

µTTηT

f

SηT

Sf0

f2

Sf0

hold.
Monad modifications between these are required to be compatible with f0 and f2.
It is somewhat surprising that these are really the lax morphisms if you try to recognize them

without the machinery we built.

Next we want to describe the 2-monad for pseudomonoids in K, which are “monoids up to
coherent isomorphism”, like monoidal V-categories. Instead of forming the equalizer above, we
form the iso-inserter and then we use an equifier to impose the coherence laws. An equifier
universally makes two 2-cells equal.

Since this diagram will involve 2-cells, we need to know that all these 2-cells in 2−CAT/K
come from 2-monad modifications. More precisely, we use the following.

Proposition 0.2.24. Let K be a locally κ-presentable 2-category. Then the 2-functor

(−) -AlgL : 2−Mndκ(K)coop → 2−CAT/K

is locally fully faithful: any 2-cell α : φ∗ ⇒ ψ∗ comes from a unique monad modification ψ ⇒
φ : S → T .

Proof. We reduce this to the fact that the semantics-structure adjunction is fully faithful in the
1-categorical case.

By the universal property of powers, α corresponds to a unique 2-functor

T -AlgL
pαq−−→ [2] t S -AlgL

∼= (S � [2]) -AlgL
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and pαq sends strict T -morphisms to strict (S � [2])-morphisms. The inclusion {0, 1} → [2]

induces [2] t S -AlgL
(π1,π2)−−−−→ S -AlgL×S -AlgL and we have π1pαq = φ∗, π2pαq = ψ∗, thus the

composite (π1, π2)pαq sends strict T -morphisms to strict S + S-morphisms.
Since this inclusion codetects identities it follows that (π1, π2) detects strict morphisms, so
pαq does indeed send strict T -morphisms to strict S � [2]-morphisms. The restriction to strict
morphisms comes from a 2-monad morphism γ. Moreover, by the uniqueness of the extension
to lax morphisms we must have pαq = γ∗ on all of T -AlgL. Thus, γ : S � [2] → T gives the
desired 2-cell β : ψ ⇒ φ : S → T woth β∗ = α by construction.

This shows that (−) -AlgL is full on 2-cells. Faithfullness again follows from the existence
of S � [2] and faithfulness of (−) -AlgL on 1-cells: if β, β′ induce the same 2-cell, then the
corresponding pβq, pβ′q : S � [2] → T induce the same 1-cell on T -AlgL → S � [2] -AlgL, so
they are in particular equal on T -AlgS , hence pβq = pβ′q, so β = β′ by universal property of
S � [2].

Remark 0.2.25. This argument would be simpler if (−) -AlgL were fully faithful on 1-cells,
but we don’t know if this is true.

With this proposition in hand, we can now complete the construction of the 2-monad for
pseudomonoids. Namely, instead of forming the coequalizer of ψ̂1 and ψ̂2 above, we form the
co-iso-inserter T1 in 2−Mndκ(K) instead.

Then T1 -AlgL has objects (M,p, u, l), where l is an identity-on-objects isomorphism between
ψ1(M,p, u) and ψ(M,p, u). This amounts to giving invertible 2-cells

M ⊗ (M ⊗M) M ⊗M

(M ⊗M)⊗M M ⊗M M

M⊗p

p

pp⊗M

αM,M,M
αM ,

M I ⊗M M ⊗M M

M M
idM

λ−1
M u⊗M p

λM

and

M M ⊗ I M ⊗M M

M M
idM

ρ−1
M M⊗u p

ρM

subject to no axioms since l is a 2-cell in G -AlgP .
A 1-cell in T1 -AlgL is a 1-cell (f, f0, f2) in F -AlgL and that the resulting “naturality square”
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in G -AlgL coming from l and l′ commute (see the exercises). This means that the equations

M ⊗ (M ⊗M) M ⊗M M

M ⊗ (M ⊗M) (M ⊗M)⊗M M ⊗M M =

M ′ ⊗ (M ′ ⊗M ′) (M ′ ⊗M ′)⊗M ′ M ′ ⊗M ′ M ′

p

pp⊗MαM,M,M

M⊗p

p′

f(f⊗f)⊗f

p′⊗M ′

f⊗f

αM′,M′,M′

f⊗(f⊗f)

αM,M,M

f2⊗1f f2

M ⊗ (M ⊗M) M ⊗M M

= M ′ ⊗ (M ′ ⊗M ′) M ′ ⊗M ′ M

M ′ ⊗ (M ′ ⊗M ′) (M ′ ⊗M ′)⊗M ′ M ′ ⊗M ′ M ′

M⊗p p

f⊗(f⊗f)

M ′⊗p′
p

f⊗f f

αM′,M′,M′ p′⊗M ′ p′

αM
′

f2

and

M I ⊗M M ⊗M M M I ⊗M M ⊗M M

M M = M ′ I ⊗M ′ M ′ ⊗M ′ M ′

M ′ M ′ M ′ M ′

idM

pu⊗Mλ−1
M

idM

f f=

idM′

p′

ff⊗f

u′⊗M ′

I⊗f

λ−1
M′

f

λ−1
M u⊗M p

λM =
f0⊗1f f2

λM
′

hold and the same goes for the one related to ρM , ρM
′
.

Note that these equations say precisely that (f, f0, f2) is a lax monoidal morphism between
(pre-)pseudomonoids (M,p, u, αM , λM , ρM ) and (M ′, p′, u′, αM

′
, λM

′
, ρM

′
), thus we already have

the correct 1-cells in T1 -AlgL.
The 2-functor T1 -AlgL → F -AlgL is fully faithful on 2-cells: a priori we need to impose the

equation

l′ · ψ1

 • •
f

g

φ

 = ψ2

 • •
f

g

φ

 · l,
but both ψ1 and ψ2 act as the identity on 2-cells and whiskering with l, l′ does not affect the
2-cell because l, l′ have identities as 1-cell components.

It follows that we already have the correct 2-cells in T1 -Alg as well. Since T (F ) → T1

codetects identities and isomorphisms, the pseudo/strict T1-morphisms are the (f, f0, f2) s.t.
f0, f2 are invertible/identities.

Our T1 -AlgL contains the 2-category of pseudomonoids and lax monoidal morphisms as a full
2-subcategory on those objects, for which the pentagon and unit triangle laws hold. We can
use an equifier to describe this full 2-subcategory.
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For this we consider a new 2-endofunctor H : K → K which sends M to M ⊗ (M ⊗ (M ⊗
M)) +M ⊗M . We construct a 2-functor κ1 : T1 -AlgL → H -AlgL by sending (M,p, u) to

M ⊗ (M ⊗ (M ⊗M))
M⊗(M⊗p)−−−−−−−→M ⊗ (M ⊗M)

M⊗p−−−→M ⊗M p−→M,

M ⊗M
M⊗λ−1

M−−−−−→M ⊗ (I ⊗M)
M⊗p−−−→M ⊗M p−→M

and a 2-functor κ2 : T1 -AlgL → H -AlgL by sending (M,p, u) to

M⊗(M⊗(M⊗M))
αM,M,M⊗M−−−−−−−→ (M⊗M)⊗(M⊗M)

αM⊗M,M,M−−−−−−−→ ((M⊗M)⊗M)⊗M (p⊗M)⊗M−−−−−−−→ (M⊗M)⊗M p⊗M−−−→M⊗M p−→M,

M ⊗M
ρ−1
M−−→ (M ⊗ I)⊗M (M⊗u)⊗M−−−−−−−→ (M ⊗M)⊗M p⊗M−−−→M ⊗M p−→M.

We extend this to 1-cells using the evident pastings of f0 and f2 and we let both 2-functors
act as the identity on 2-cells.

Both restrict to 2-functors on strict morphisms, so by our general results they are induced by
2-monad morphisms

T (H) T1

κ̂1

κ̂2

There are two ways of changing brackets in a word of four letters and they correspond to
the two composites in MacLane’s pentagon law. These and the cells in the unit triangle induce
2-cells β1, β2 : κ1 ⇒ κ2 in 2 −CAT/K. We shall explain this for the associator and leave the
unit law as an exercise. To make things more readable, we will simply write the tensor product
in K as a concatenation, i.e. M ⊗M will be MM . We construct two 2-natural transformations
β1, β2 : κ1 → κ2 on 2-Cat/K with component at (M,p, u, α, λ, ρ) ∈ T1 -Algl resp. given by

M(M(MM)) M(MM) MM M

M(MM)

M(M(MM)) (MM)M MM M

(MM)(MM) M(MM)

((MM)M)M (MM)M MM M

M(Mp) Mp p

M(Mp) α

α

(MM)p

α

(pM)M

pM p

p(MM)

Mp

α

pM p

αM

αM
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and

M(M(MM)) M(MM) MM M

M(M(MM)) M((MM)M) M(MM) MM M

(M(MM))M (MM)M MM M

(M(MM))M ((MM)M)M (MM)M MM M

M(Mp)

Mα M(pM) Mp

Mp p

p

α

(Mp)M

α

pM p

αM p(pM)M pM

MαM

αMM

αM

which has the correct codomain since the pentagon law holds in K. In Cat these correspond
precisely to the two composites in the pentagon law (involving two respectively three instances
of the associator). A similar construction allows us to translate the unit axiom into two diagrams
involving the second component of κ1, κ2 (exercise). These βi are 2-natural since they are built
from 2-natural transformations in K on 2-cells α, λ, ρ which are by definition compatible with
all (f, f0, f2) in T1 -Algl. Now we use the Proposition ensuring that (−) -Algl is fully faithful
on 2-cells: the βi are (β̂i)

∗ for unique monad modifications β̂i : κ̂2 ⇒ κ̂1. Let PsMon be the
coequifier

T (H) T1 PsMon

κ̂2

κ̂1

β̂2β̂1

in 2-Mndκ(K). Then PsMon -Algl is the equifier of β1 and β2, so it is the full sub-2-category
of T1 -Algl consisting of objects where β1 and β2 agree. Similarly for the unit law. Since an
equifier does not affect 1- and 2-cells, our previous work shows that PsMon -Algl is isomorphic
to the 2-category of pseudomonoids, lax monoidal morphisms (in the usual sense) and monoidal
2-cells. We have also shown that PsMon -Algp has as 1-cells the strong monoidal morphisms
and PsMon -Algl has as 1-cells the strict monoidal morphisms.

Our next example concerns categories with colimits of a given shape. This construction only
works for conical colimits and only if the forgetful functor V : V → Set is conservative (e.g.
Set,ModR but not sSet,dgModR,Cat). We also assume that V is a lfp cosmos so that V -Cat
is a lfp 2-category.

Let D be a κ-presentable (ordinary) category. We will show that the 2-category of small
V-categories with chosen D-colimits and V-functors which preserve D-colimits is TD -Algp for a
suitable κ-accessible 2-monad TD on V -Cat.

Our assumptions imply that C ∈ V -Cat has chosen D-colimits iff the diagonal V-functor
∆: C→ [D,C] has a (chosen) left adjoint.

So we start with the free 2-monad on the κ-accessible endo-2-functor F := [D,−]. The objects
of F -Algl already have a 1-cell l : [D,C]→ C. We need to insert a unit and a counit and impose
the triangle identities using an equifier.

There is a slight problem: note that the unit goes from id[D,C] ⇒ ∆l, so a priori this is a
2-cell FC ⇒ FC and doesn’t need to live in H -Algl. But F is a right 2-adjoint, so we can find
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a suitable H, namely H = [D,−]⊗D: to give

[D,C] [D,C]

∆l

id

η

is equivalent to giving

[D,C]⊗D C

(∆l)#

(id)#

η

in V -Cat. Thus our second endo-2-functor G sends C to C+[D,C]⊗D (the first term being for
the counit). We form the inserter of the two 2-functors F -Algl → G -Algl sending (C, l : [D,C]→
C) to (l∆: C → C, id# : [D,C] ⊗ D → C) resp. (id : C → C, (∆l)# : [D,C] ⊗ D → C). Here we
really need to be able to give in non-invertible 2-cells. The 1-cells in F -Algl are pairs (F, λ)
consisting of a V-functor f : C→ C′ and a 2-cell

[D,C] C

[D,C′] C′

l

[D,f ]

l′

f
λ

and the two 2-functors send this to
C [D,C] C

C′ [D,C′] C′

f

∆

∆ l

l′

f[D,f ]
λ , 1id#


and 1idC

,


[D,C] C [D,C]

[D,C′] C′ [D,C′]
l′

l ∆

∆

[D,f ]f[D,f ]
λ


#

respectively. Both act as the identity on 2-cells. Using the adjunction − ⊗ D a [D,−], we
find that the coinserter T1 of the resulting 2-monad morphism has T1 -Algl given by quadruples
(C, l, η, ε), where η : id⇒ ∆l, ε : l∆⇒ id (subject to no axioms) and 1-cells are (f, λ) s.t.

C

[D,C] C [D,C] [D,C] [D,C]

[D,C′] C′ [D,C′] [D,C′] [D,C′]

l c7→∆c

[D,f ]

l′ c′ 7→∆c′

[D,f ]f = [D,f ]

l ∆

id[D,C]

id[D,C′]

[D,f ]

η

λ
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and

C [D,C] C C C

C′ [D,C′] C′ C′ C′

[D,C]

c 7→∆c l

f

c′ 7→∆c′ l′

f[D,f ] = f

idC

idC′

f

c′ 7→∆c′ l′

idC

λ

ε

ε

We now impose the triangle identities using an equifier in the same manner as before (using the
necessary 2-adjunction for the one, where the target is not C). This is isomorphic to TD -Algl
where TD denotes the corresponding coequifier in 2-Mndκ(V -Cat). Since this is a coequifier,
the 1-cells and 2-cells are the same as in T1 -Algl. However, now l a ∆ with unit η and counit
ε, so the above coequifier say that λ is the mate of 1C. So each f has a unique lax morphism
structure. The pseudo T1-morphism are the ones where λ is invertible, so the same is true
for TD. The components of λ are precisely the colimit comparison morphisms, so the pseudo
TD-morphisms are exactly the D-colimits preserving V-functors. One can also check that this
works for 2-cells, meaning all V-natural transformations are TD-transformations. In T1 there is
a condition which becomes automatic when λ is the mate of 1C.

Remark 0.2.26. The free objects for TD should correspond to the D-colimits closure in the
diagram category [C,V] of the representables. For this we need to understand “how free” TD(C)
actually is in TD -Algp (as opposed to TD -Algs).

Remark 0.2.27. If we want to get the 2-monad for categories with colimits of shape {Di}i∈I
for some set of ordinary categories, we simply take the coproduct

∐
TDi in 2-Mnd(V -Cat) (all

Di are κ-presentable). E.g. given shapes for binary coproducts, initial object and coequalizers
we get finitely cocomplete categories in the case V = Set. Our final example concerns 2-
categories of 2-functors. Let K be a cocomplete 2-category and A a small 2-category. Then
[A,K], the 2-category of (strict) 2-functors, (strict) 2-natural transformations and modifications
is the 2-category of algebras for the 2-monad

T : [ObA,K] −→ [ObA,K]

(Xa)a∈A 7→

(∑
a∈A

A(a, b)�Xa

)
b∈A

by definition in our case if K = Cat, and in general it follows from the adjunction defining the
copower:

(A(a, b)�Xa → Xb)! (A(a, b)→ K(Xa, Xb)).

The coproduct of T 2 at c ∈ A is(
T 2(Xa)a∈A

)
c

=
∑
b

A(b, c)� (T (Xa)a∈A)b

=
∑
b

A(b, c)�

(∑
a

A(a, b)�Xa

)
∼=
∑
a,b

(A(b, c)×A(a, b))�Xa.
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The unit and multiplication are given by the identities resp. composition in A. To give a lax
T -morphism (Fa)a∈A → (Ga)a∈A amounts to giving a pair (f, f) whose f is simply a morphism
of collections, i.e. a 1-cell fa : Fa → Ga for each a ∈ A and f is a 2-cell∑

aA(a, b)�Fa Fb

∑
aA(a, b)�Ga Gb

ϕb

fb

γb

∑
a A(a,b)� fa

fb

for each b ∈ A. Here ϕ and γ encode the algebraic structure of F and G. By the universal
property of coproducts, to give fb is equivalent to giving a 2-cell for each component a ∈ A,
which by universal property of copower corresponds to a 2-cell

A(a, b) K(Fa, Fb)

K(Ga, Gb) K(Fa, Gb)

Fa,b

K(Fa,fb)

K(fa,Gb)

Ga,b
fa,b

in Cat. So this is simply a natural transformation in Cat, which has components

Fa Fb

Ga Gb

Fψ

fb

Gψ

fa
fψ

for each ψ : a→ b in A. So the data of a lax T -morphism corresponds bijectively to the data of
a lax natural transformation F ⇒ G. In fact, (f, f) satisfies the axioms of a lax T -morphism
if and only if (fa, fψ) form a lax natural transformation. The naturality of fa,b is precisely the
compatibility of fψ with 2-cells and the two axioms for a T -morphism correspond to the pasting
and identity axioms for a lax natural transformation. This follows since the axioms for T -
morphisms can be checked componentwise. Similarly, one can check that T -transformations are
the modifications. Finally, a 2-cell out of a coproduct is invertible if and only if its components
are and

A(a, b)�X Y

is an isomorphism if and only if

A(a, b) K(X,Y )

is an isomorphism, so the pseudo T -morphism are precisely the (fa, fψ) s.t. each fψ is an
isomorphism. Thus the pseudo T -morphisms are precisely the pseudonatural transformations.

0.3 Limits and colimits in T -Algp

Recall that for a 1-monad T on a complete category, T -Alg is always complete. The enriched
version of this also works. In particular, T -Algs is complete if K is. What about T -Algp and
T -Algl? We start with some positive results.
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Proposition 0.3.1. If K has products and T : K → K is a 2-monad, then the products in
T -Algs are products in T -Algp.

Proof. We already know that products exist in T -Algs, so this amounts to checking the universal
property. This is similar to the case we saw involving the colax limit of an arrow. In the next
few propositions we will see more examples of this kind, so we have this as an exercise.

Remark 0.3.2. We actually only proved existence of products in T -Algs if K is complete. It is
true in general if K has products (exercise). The same remains true in the following propositions.

Proposition 0.3.3. If K has (iso-)inserters, then T -Algp has (iso-)inserters. The universal
1-cell is a strict T -morphism and it detects strict T -morphisms.

Proof. We do the inserter case; the iso-inserter is similar. Let (f, f), (g, g) : (A, a)  (B, b) be
two pseudo T -morphisms and let

A

I B

A

p f

p g

λ

be the inserter in K. We have a · Tp : TI → A and a 2-cell

fa · Tp f
−1·Tp

=====⇒ b · Tf · Tp b·Tλ
===⇒ b · Tg · Tp g·Tp

===⇒ ga · Tp

and so from the universal property we get a unique i : TI → I s.t. p · i = a ·Tp and the equation

TA TA

TI TB TI TB

A TA

I B I B

A A

Tp

a

i

p

Tf

b

f

p g

λ

=

Tp Tf

Tp Tg

i

p

a

b

g

λ

f

g

holds. As in the proof of the “colax limit of an arrow”, we use the axioms for (f, f) and (g, g) and
the 2-naturality of η and µ to show that (I, i) is a T -algebra. By construction, p : (I, i)→ (A, a)
is a strict T -morphism and λ a T -transformation. It remains to check the universal property,
so consider

(A, a)

(X,x) (B, b)

(A, a)

(q,q)

(q,q)

µ
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in T -Algp. This means that the equation

TA TA

TX TB TX TB

A TA (∗)

X B X B

A A

Tq

a

x

q

Tf

b

f

q g

µ

=

Tq Tf

Tq Tg

x

q

a

b

g

Tµ

f

g

q

q

holds. We have a unique 1-cell h : X → I s.t. ph = q and λh = µ from the universal property
of (I, p, λ) in K. Thus q can be seen as a 2-cell

p · i · Th = a · Tp · Th = a · Tq q
=⇒ q · x = p · h · x

in K. Plugging this into (∗) and using ph = q, λh = µ, we find that (λhx) · (fq) · (f · Tp · Th) =

(gq) · (g · Tp · Th) · (b · Tλ · Th) holds. Using the definition of i in terms of f
−1

, we find
that the equation holds if and only if (λ · h · x) · (f · q) = (g · q) · (λ · i · Th) holds. From
the 2-dimensionality of the universal property of (I, p, λ) it follows that there exists a unique
h : i · Th⇒ x · h s.t. ph = q. Using the uniqueness part of the 2-dimensional universal property
plus the fact that (q, q) is a pseudo T -morphism, it follows that (h, h) is a pseudo T -morphism.
This (h, h) is clearly the unique 1-cell with p · (h, h) = (q, q), so this shows the 1-dimensional
universal property. Checking the 2-dimensional universal property is left as an exercise.

We also have the following statement similar to the previous one.

Proposition 0.3.4. Let K be a 2-category with equifiers. Then T -AlgP has equifiers, which
are preserved by UP . The universal 1-cell is a strict T -morphism detecting strict T -morphisms.

Proof. Consider a pair of 2-cells in T -AlgP

A B

f

g

α β ,

with equifier p : E → A in K. We have to define an algebra structure on E and check the
universal property.

The T -transformation axiom for α says that (α · a) · f = g · (b · Tα), so ((α · a) · Tp)(f · Tp =
(g · Tp) · (b · Tα · Tp) holds and similarly with β in place of α. Since f is an isomorphism,
this implies that α · a · Tp = β · a · Tp. It follows that there exists a unique e : TE → E s.t.
p · e = a · Tp.

As in the other cases, one checks that (E, e) is a T -algebra with the desired universal property.
Note that p is a strict T -morphism by construction. The claim about detecting strict morphisms
is also left as an exercise.
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We have shown that T -AlgP has products, inserters, equifiers, or is PIE-limits for short
(namely anything that can be built from there).

Remark 0.3.5. In general, T -AlgP does not have equalizers.

Example 0.3.6. Consider the 2-category of small categories with an initial object and functors
preserving it up to isomorphism. This is T -AlgP for a suitable T . We can show that the
equalizer of 0, 1: ∗ → {0 ∼= 1} doesn’t exist. Indeed, if E → ∗ were the equalizer, then the
unique object can’t be in the image since it is mapped to two different objects in {0 ∼= 1}. It
follows that the image is ∅ and therefore E = ∅, which does not have an initial object .

A consequence of this remark is that, even if K is complete, T -AlgP will in general not be
complete. However, we will see that PIE-limits can be used to construct all bilimits, i.e. weak
2-limits.

Remark 0.3.7. The situation in T -AlgL is even worse: it does have products, but it has neither
inserters nor equifiers.

Example 0.3.8. Consider the 2-category of finitely cocomplete small categories with all func-
tors. This is again T -AlgL for a suitable (finitary) T . Since it has products, if it had inserters
it would also have comma objects, but the comma object

Set(X,Y ) ∗

∗ SetcY

cX

is the discrete category Set(X,Y ) in Cat, so if the comma object in T -AlgL existed it would
induce a functor to Set(X,Y ). This is however impossible if Set(X,Y ) has more than one
object, since it contradicts the existence of an initial object. More precisely, the existence of an
initial object implies that the unique morphism from the comma object in T -AlgL to Set(X,Y )
factors through the inclusion {f} → Set(X,Y ) for some f : X → Y . But in T -AlgL we also
have the 2-cell

∗ ∗

∗ Set
Y

X
g̃

for any g̃ : X → Y , so g would also have to lie in the image of the comparison morphism. It
follows that we don’t have products.

We will also show that it lacks equifiers. Indeed, consider two distinct morphisms f, g : X →
Y . They give two 2-cells cf , cg : cX → cY and the equifier in Cat is ∅, thus the equifier in
T -AlgL, if it existed, would map to ∅, hence it would be ∅ itself. However, ∅ is not finitely
cocomplete, thus the equifier doesn’t exist.

These facts emphasize that using f
−1

was crucial in lifting inserters to algebras.
In order to investigate what kinds of limits we can build using products, inserters and equifiers

and to study the existence of colimits in T -AlgP , we need the notion of flexible algebras. This,
in turn, requires the existence of (lax) pseudo morphism classifiers.
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Definition 0.3.9. Let T be a 2-monad on K and A a T -algebra. We write T -AlgS
J−→

T -AlgP
K−→ T -AlgL for the inclusions. A pseudo (respectively lax) morphism classifier is a repre-

senting object for T -AlgP (A, J−) (respectively T -AlgL(A, J−)) in T -AlgS , that is an object QA
(respectively QLA) with a pseudo T -morphism hA : A  QA (respectively a lax T -morphism
hLA : A  QLA) s.t. the induced 2-natural transformation T -AlgS(QA,B) → T -AlgP (A, JB)
(respectively T -AlgS(QLA,B)→ T -AlgP (A, JB)) is an isomorphism.

We are asking for each A  B to factor uniquely through a strict T -morphism Q → B plus
a 2-dimensional property.

Remark 0.3.10. If the pseudo morphism classifier exists for all A, then J has Q as a left
2-adjoint. Similarly, KJ has a left 2-adjoint if QLA exists for all A. The object QA is often
denoted A′.

Theorem 0.3.11 (Lack). If T -AlgL has codescent objects (respectively lax codescent objects),
then it has (lax) pseudo morphism classifiers for all A.

Proof. We have to translate the data of a lax/pseudo T -morphism (f, f) : (A, a) → (B, b) into
a diagram in T -AlgS and then take its colimit.

The 1-cell f : A → B in K corresponds bijectively to a 1-cell g : TA → B in T -AlgS . The
bijection sends f to g = b · Tf since b is the counit of T a US .

Giving a 2-cell

TA A

TB B
b

a

fTf
f

in K amounts to giving a 2-cell

T 2A TA

T 2B TB

TfT 2f

µB

µA

ξ

in T -AlgS : the codomain has to be b · T (f · a) = b · Tf · Ta = g · Ta and the domain is
b · T (b · Tf) = b · Tb · T 2f = b · µB · T 2f = b · Tf · µA = g · µA.

The condition f · ηA = 1f becomes ξ · TηA = 1g while the other axiom becomes

T 2A TA T 2A TA

T 3A TA B = T 3A T 2A B

T 2A TA T 2A TA

Ta

µA

g

g

g

Ta

µA

T 2a

µTA ξ

ξ

g

gTa

µA

ξ

µA

µTA

T 2a

Ta

TµA

in T -AlgS . This is precisely a (lax) codescent datum on the truncated simplicial diagram

T 3A T 2A TA
Ta

µA
TµA

T 2A

µTa

and one can check that the 2-dimensional aspect of a codescent object corresponds precisely
to the fact that 2-cells g ⇒ g′ compatible with ξ correspond bijectively to T -transformations
(f, f)⇒ (f ′, f ′).
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0.4 Codescent objects

To be moved elsewhere. This section fills a previous gap.

Definition 0.4.1. Consider a truncated simplicial diagram

X2 X1 X0s0

d1

d0

d1

d2

d0

in a 2-category K. A codescent datum in this diagram X• is a pair (g, ξ) of a 1-cell g : X0 → C
and a 2-cell

X0

X1 C

X0

g

gd0

d1

ξ

s.t. the axiom ξ · s0 = 1g and the equation

X1 X0 X1 X0

X2 X0 C = X2 X1 C

X1 X0 X1 X0

d0

d1
d0

d2

=

d1

d0

g

g

g

ξ

ξ

g

gd0

d1

ξ

d1

d0

d0

d2

d1

=

=

holds.
A morphism of descent data (g, ξ) and (g′, ξ′) with the same target C is a 2-cell α : g ⇒ g′

s.t.
X0 X0

X1 C = X1 C

X0 X0

d1

d0

g

g′

g′

ξ′

d0

d1 g

g

g′

ξ

α

α

holds.
Sending C ∈ K to the category of descent data with target C defines a 2-functor K→ Cat.

A codescent object for X• is a representing object for the 2-functor. By Yoneda, this amounts
to a universal such codescent datum.

An iso-codescent object is one where each ξ is invertible.

Remark 0.4.2. Codescent objects are weighted colimits and the weight is given simply by
the inclusion ∆≤2 → Cat (where the domain category has the objects [0], [1], [2] and all of the
arrows of ∆ but the codegeneracies [1]→ [2]). The dual notion for cosimplicial objects is called
descent objects.
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We can also consider these for pseudofunctors ∆≤2
op → K. In this case, one has to replace

the equalities above coming from the simplicial identities by the coherence isomorphisms, i.e.

X0

X0 X1 C = 1g

X0

g

gd0

d1

s0 ξ

∼=

∼=
.

Remark 0.4.3. The terminology is not entirely standardized: sometimes the “iso” version is
called the (co)descent object and the above is called a lax codescent object. For emphasis, it is
perhaps best to always refer to iso-(co)descent objects and lax (co)descent objects.

Proposition 0.4.4. If K is a complete and cocomplete 2-category, then so is T -AlgS and thus
QA, QLA exist for all A.

Proof. We showed this for general V in the past course.

As already mentioned, in this case Q defines a left 2-adjoint to J : T -AlgS → T -AlgP . We
write eA : QA→ A for the counit of the adjunction, so this is the unique strict T -morphism s.t.
the triangle

A QA

A

hA

eA

commutes. Notice that this is just one of the triangle identities with J omitted from the
notation.

Remark 0.4.5. Often the notation hA = qA and eA = pA is used instead.

What can we say about this adjunction?

Proposition 0.4.6. If hA : A  QA exists and the pseudolimit of hA exists in K, then eA is
right adjoint to hA with identity unit and invertible counit ρA : hA · eA ⇒ idQA. In particular,
eA and hA are equivalences in T -AlgP .

Proof. Existence of the pseudolimit in K implies the existence in T -AlgP of the pseudolimit of
the form

C

A B
hA

vu ,

i.e. u, v are strict, and this factorization s.t.

QA A

C = A QA

A QA

r

hA

vu

d hA

hA

hA
= =

=
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in T -AlgP . By the universal property of QA, there exists a unique w : QA→ C s.t. r = w · hA.
Since v · w · hA = v · r and v · w is strict, we have v · w = idQA. On the other hand, we have
u · w · hA = u · r = idA = eA · hA, where the last equality comes from the triangle identities. It
follows that u · w = eA.

We get then the invertible 2-cell ρA = λ · w : hA · eA = hA · u · w ⇒⇒ v · w = idQA, which
satisfies ρA · hA = λ · r = 1hA by construction of r. This gives one of the triangle identities,
while the other one follows formally from this since all 2-cells ??? are invertible as shown in the
next lemma.

Lemma 0.4.7. If f : A → B, u : B → A, η : idA ⇒ u · f , ε : f · u ⇒ idB are 1-cells and 2-cells
s.t. εf · fη = 1f and η, ε are invertible, then uε · ηu = 1u holds, so (f, u, η, ε) is an adjoint
equivalence.

Proof. Since u· ∼= id, f is faithful, so it suffices to checl that

• • • = 1f ·u

• •
f

u

f

u η
ε

holds, which by invertibility of ε it is equivalent to

• • = •

• • • • •
f u

u f
ε

u fη
ε ε

,

which follows from the fact that

• • = 1f

• •
f u

f
ε

η

This shows that the strict T -morphism eA : QA→ A is always an equivalence in T -AlgP ; in
fact, it is a surjective equivalence and it has an inverse equivalence which is a section.

Definition 0.4.8. An algebra A in T -AlgS is flexible if eA : QA→ A has a section in T -AlgS .

Proposition 0.4.9. Assume that Q exists. The following are equivalent:

1. the T -algebra A is flexible;

2. the counit eA : QA→ A is a surjective equivalence in T -AlgS ;

3. the T -algebra A is a retract of some QB in T -AlgS .

Proof. Missing

The next theorem gives a first class of examples of flexible algebras.

Theorem 0.4.10. Suppose that Q exists and pseudolimits of arrows exist in K. Then all free
T -algebras are flexible.
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Proof. We have that the free algebra 2-functor T is left adjoint to US = UP · J , with unit
ηA : A→ TA. Consider the 2-natural transformation

id UPJT UPJQJT
UP hJTη

with mate k : T ⇒ QJT . We claim that eT · k = idT , so each eTA is a retraction.
By definition, k is the unique 2-natural transformation s.t. UPJk · η = UPhJT · η holds, thus

UPJeT · UPJk · η = UPJeT · UPhJT · η = η by the triangle identities, so by adjunction we get
eT · k = id, as claimed.

It follows that eTA is split by kA and h is a 2-natural transformation between two 2-functors
with target T -AlgS , so kA is indeed a strict T -morphism.

Thus we have the examples TA andQA of flexible algebras. The following proposition, combined
with the examples of free algebras, shows that free T -algebras in T -Algs are “essentially free”
in T -Algp: every TA B is isomorphic to a strict one, hence corresponds to A→ B in K.

Proposition 0.4.11. Assume Q exists plus pseudolimits of arrows in K. If A is a flexible alge-
bra, then the full and faithful inclusion T -Algs(A,B) → T -Algp(A,B) is essentially surjective
for all B, hence an equivalence of categories. In other words, any A  B is isomorphic to a
strict T -morphism A→ B.

Proof. For algebras of the form QA, the commutative triangle

T -Algs(QA,B) T -Algp(JQA, JB)

T -Algp(A, JB)

JQA,B

∼=
n∗A

coming from the 2-adjunction Q a J , combined with the fact that nA is an equivalence in
T -Algp, shows that JQA,B is an equivalence. For general flexible A, we know that eA is an
equivalence in T -Algs, so the commutative square

T -Algs(A,B) T -Algp(JA, JB)

T -Algs(QA,B) T -Algp(JQA, JB)

JA,B

e∗A ∼= Je∗A∼=

JQA,B

∼=

shows that JA,B is an equivalence of categories for all B ∈ T -Algs.

Remark 0.4.12. Let T be the 2-monad on V -Cat for e.g. finite conical limits. The above
shows that TA is the free cocompletion of A under finite colimits: let PfA be the closure of the
representables in [Aop,V] under finite conical colimits. Then the induced

A PfA

TA

y

ηA

is an equivalence. So, up to equivalence, ηA is the Yoneda embedding. In particular, ηA is fully
faithful.
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Definition 0.4.13. A biequivalence between bicategories (or 2-categories) consists of pseudo-
functors F : A→ B, G : B→ A and pseudonatural equivalences idA ' GF , FG ' idB.

Remark 0.4.14. With the axiom of choice, F : A → B is a biequivalence if and only if each
FA,A′ : A(A,A′) → B(FA,FA′) is an equivalence of categories and F is essentially surjective
up to equivalence: for every B ∈ B there exists an A ∈ A and an equivalence FA→ B in B.

We write T -Flex for the full sub-2-category of T -Algs consisting of the flexible algebras.
The above proposition, combined with the remark, shows that J : T -Flex → T -Algp is a

biequivalence: every nA is an equivalence in T -Algp, so every object in the target is equivalent
to one in the image, and the proposition shows JA,A′ is an equivalence for A,A′ flexible. In fact,
much more is true in this case: the left 2-adjoint Q : T -Algp → T -Algs factors through T -Flex
and nA is an equivalence in T -Algp, eA is an equivalence in T -Flex, so we have a biequivalence
F = J , G = Q s.t. Q a J (left 2-adjoint), n and e are 2-natural, F,G are 2-functors. The
only “weakness” is that nA, eA are merely equivalences, not isomorphisms. If we are interested
in properties of T -Algp that are invariant under biequivalences, it suffices to show that the
corresponding property holds for T -Flex. If we want to study cocompleteness properties of
T -Algp, it makes sense to first understand what kinds of colimits T -Flex has.

Recall that an idempotent e : A→ A in a 2-category K is a 1-cell such that e2 = e (equality,
not isomorphism). The splitting of this idempotent is the conical colimit of (A, e) : Idem→ K,
where Idem = {e : ∗ → ∗} is the free category on one object with one idempotent.

Theorem 0.4.15. Let K be complete and cocomplete and let T : K → K be an accessible
2-monad. Then T -Flex is closed in T -Algs under splittings of idempotents, coproducts, coin-
serters, and coequifiers.

Proof. Splittings of idempotents are retracts, and T -Flex is clearly closed under retracts. The
assumptions on K and T imply that T -Algs is cocomplete. Now let jn : An → A be coproduct
inclusions in T -Algs such that each An is flexible. Thus there exist 1-cells hn : An → QAn in
T -Algs such that eAn ·hn = idAn . Let h : A→ QA be the unique 1-cell such that hjn = Qjn ·hn
for every n. Since e : Q⇒ id is 2-natural, we have

eAhjn = eAQjnhn
2-nat
= jn · eAn · hn = jn

for all n, so eAh = idA therefore A is flexible. Now let f, g : A→ B be 1-cells in T -Algs such that
B is flexible (this turns out to suffice). Let t : B → C be the coinserter in T -Algs, with 2-cell
λ : tf ⇒ tg. We have to construct a section of eC : QC → C. Choose a section k : B → QB of
eB : QB → B in T -Algs. Since K has pseudolimits of arrows, we have a 2-cell ρB : nBeB ∼= idQB
with eBρB = 1eB . Thus σ := ρB · k : nB ∼= k is an isomorphism with eBσ = 1eBk = 1idB .

The 2-naturality of n : id TQ gives nCt = Qt : nB, so we get a T -transformation

τ : Qtk · f Qtσ−1f
=====⇒ QtnBf = nCtf

nCλ===⇒ nCtg = QtnBg
Qtσg
===⇒ Qtk · g

in T -Algs (since both the domain and codomain are strict T -morphisms). By the universal
property of (C, t, λ), we get a unique 1-cell h : C → QC such that ht = Qt · k and hλ = τ .
Again using 2-naturality of e, we have etht = eCQtk = teBk = t and eChλ = eCτ . We claim
that eCτ = λ: this follows from eBσ = 1idB and eCnC = idC . Thus the universal property tells
us eCh = idC , which shows that h is the desired section.

The coequifier is a bit easier: assume that we have two 2-cells α, β : f ⇒ g in T -Algs and again
only that B is flexible. Let now t : B → C be the coequifier of α and β. Let k : B → QB and
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σnB ∼= k be as above. Since nCt = QtnB, we have QtnBα = QtnBβ (by definition, tα = tβ), so
Qtkα = Qthβ because nB ∼= k. Thus there exists a unique h : C → QC such that ht = Qt · k.
Since

eCht = eCQt · k
2-nat
= teBk = t,

we have eCh = idC , so C is indeed flexible.

Example 0.4.16. Let Lex be the 2-category of finitely complete categories and finite limits
preserving functors (and all natural transformations). Here we assume that a fixed choice of
limit has been made, so that this is T -Algp for some finitary 2-monad on Cat. We write Lexs
for the 2-category with the same 0-cells and 2-cells and with 1-cells the functors which strictly
preserve the chosen limits; that is T -Algs. We can start with the free category in Lexs on
one object G: this is flexible since all free algebras are. We can use a coinserter to get an
object G and morphisms e : ∗ → G, m : G × G → G, and i : G → G (more precisely, we get a
flexible algebra B such that Lexs(B,C) is isomorphic to the category of quadruples (G, e,m, i)).
Finally, we use a coequifier to impose the laws of a group object: m ·m×G = m ·G×m, etc.
Thus there is a flexible algebra Gp in Lexs such that Lexs(Gp,C) is isomorphic to the category
of group objects in C. Since every pseudomorphism Gp → C is isomorphic to a strict one, we
conclude that Lex(Gp,C) is equivalent to the category of group objects: Gp is the universal
finitely complete category with a group object in it.

More details for the construction: the forgetful 2-functor Us : Lexs → Cat is represented by
T∗, the free T -algebra on one object. We start with the diagram

Us Us × Us × Us

(∗,−×−,id)

(id,id,id)

in [Lexs,Cat]. These are indeed 2-natural since each 1-cell in Lexs strictly preserves ∗ and
−×−. It follows that they are induced by morphisms T (∗+∗+∗)⇒ T∗ in Lexs. If we form the
coinserters of these two, then we obtain the category B above with Lexs(B,C) ∼= quadruples
(G, e,m, i). Let F = Lexs(B,−). To impose the axioms, we consider

F Us × Us × Us × Us

f

g

βα

where the first component α1, β1 : f1 ⇒ g1 sends Γ = (G, e,m, i) to (G × G) × G = f1(Γ),
g1(Γ) = G, α1, β1 are the ways of associating.

Example 0.4.17. Consider the 2-monad T on [K,K]κ with algebras 2-Mndκ(K), the 2-category
of κ-accessible 2-monads. We have shown that the 2-monads for categories with chosen conical
(co)limits and the 2-monads for (braided, symmetric) pseudomonoids are flexible algebras for
T . On the other hand, the 2-monad for monoids is not flexible: we used a coequalizer in the
construction, so this seems at least plausible.

Example 0.4.18. We now have an abstract reason why the free strict monoidal category on
a monoid object exists. In the last course, we briefly indicated why this is given by ∆+, the
augmented simplex category with ordinal sum as tensor product. We can now give a rigorous
proof of this. As in the case above for group objects, we can construct a flexible strict monoidal
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category M representing monoids. We claim that ∆+ is isomorphic to M; in particular, ∆+ is
flexible. Let (M,p, u) be the universal monoid in M. We have to start with constructing a strict
monoidal functor ∆+ →M which sends ([0], σ0, δ−1) to (M,p, u). We set F ([n]) = M⊗n+1, we
send δi : [n]→ [n+ 1] to M⊗i⊗ u⊗M⊗n−i+1 : M⊗n+1 →M⊗n+2 and we send σi : [n]→ [n− 1]
to M⊗i ⊗ p ⊗M⊗n−i−1 : M⊗n+1 → M⊗n respectively. We have to check that the simplicial
identities hold to show that F is a functor. This follows from the axioms for a monoid and the
laws for a (strict) monoidal category (e.g. σiσi+1 needs the associativity axiom for p, while σiσj
i < j − 1 uses only the axiom that − ⊗ − : M×M → M is a functor). Next we need to check
that the two diagrams

∗ ∆+ ×∆+ M×M

∆+ M ∆+ M

[−1]

F

I

and +

F×F

⊗

F

are commutative. The first is immediate from the definition. The second one clearly commutes
on objects, so one only needs to check that it commutes on arrows of the form (σi, id), (δi, id),
(id, σi), (id, δi). In all cases, we get F (σi) resp. F (δi) tensored with some number of copies of
M on the right resp. left; these numbers coincide for both composites in the diagram.

Since ([0], σ0, δ−1) is a monoid in ∆+, there exists a G : M → ∆+ with GM = [0], Gp = σ0,
Gu = δ−1. Thus G(M⊗n+1) = [n]. Thus GF is the identity on objects, and it is clearly
full: each σi, δj arises from σ0, δ−1 via ordinal sum on the right and left. Since the hom-sets
are finite, it follows that GF is full and faithful and so GF is an isomorphism of categories:
GF[n],[m] : ∆+([n], [m])→ ∆+([n], [m]). Moreover, FG sends (M,p, u) to (M,p, u) therefore by
the universal property of M we have FG ∼= idM. Thus M ' ∆+. This already shows that ∆+ is
flexible since it is a retract of M. Moreover, the category of strong monoidal functors ∆+ → C

is equivalent to the category of monoids in C.

We can extend this to non-strict monoidal categories: there exists a flexible monoidal category
M̃ which is free on a monoid. By MacLane’s coherence theorem, there exists a strict monoidal
category M̃′ and a monoidal equivalence M̃′ → M̃. It follows that there exists a monoid in M̃′

which is sent to a monoid isomorphic to the universal one. From the arguments above, we get
a map ∆+ → M̃′ sending ([0], σ0, δ−1) to this monoid and thus an arrow F : ∆+ → M̃′ sending
([0], σ0, δ−1) to a monoid isomorphic to the universal one.

On the other hand, from the universal mapping property we get G : M̃ → ∆+ sending the
universal monoid to ([0], σ0, δ−1). The composite FG is then isomorphic to a strict monoidal
functor and it follows from the universal mapping property that FG ∼= id

M̃
.

Note that ∆+ has no non-identity isomorphisms, thus GF : ∆+ → ∆+ is strict and it sends
([0], σ0, δ−1) to itself, hence GF = id∆+ .

Observe tat this does not imply that ∆+ is flexible since F is not strict, however the argument
shows that ∆+ is equivalent to M̃ in T -AlgP , hence T -AlgP (∆+,V) ' Mon(V).

0.5 Flexible Monads

Definition 0.5.1. A κ-accessible 2-monad on a locally κ-presentable 2-category is called flexible
if it is a flexible algebra for the 2-monad for κ-accessible 2-monads in K with algebras Mndκ(K).

Proposition 0.5.2. If T is a felxbile 2-monad on K, then any pseudo-T -algebra is isomorphic
to a strict T -algebra.
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Proof. Recall that Mndκ(K) is a coreflective subcategory in Mnd(K), so there exists a monad
〈A,A〉κ in Mndκ(K) s.t. we have a natural bijection between T → 〈A,A〉 and T → 〈A,A〉κ for
all κ-accessible T and A ∈ K. This bijection extends to pseudo-morphisms of monads (exercise),
giving us a correspondance between T  〈A,A〉 and T  〈A,A〉κ.

It follows that for any flexible T and any φ : T  〈A,A〉)κ there exists a strict monad
morphism φ̃ : T → 〈A,A〉κ and an isomorpjism τ : φ⇒ φ̃.

The monad morphism φ corresponds to a : TA→ A, α : a ·Ta⇒ a ·µA and α0 : idA ⇒ a · ηA,
i.e. a pseudo T -algebra, while φ̃ corresponds to a strict T -algebra structure ã : TA → A. The
morphism τ vorresponds to

TA A

TA A

ã

a

τ
,

which is a morphism of pseudo T -algebras since the equations

T 2A TA T 2A TA

T 2A TA A = T 2A TA A

TA A TA A

µA

µA

ã

a

a

Ta

=

µA

a

Ta

T ã

ã

ã

τ

=

= =

Tτ

and

A A

A TA A = A A

TA A TA A
ã

a

ηA

ηA

=

ηA

ã

α0

τ =

=

hold.

Remark 0.5.3. For κ-accessible 2-monads on locally κ-presentable 2-categories we always have
a bijection between T  〈A,A〉κ and QT → 〈A,A〉κ, so pseudo T -algebras are strict QT -
algebras. In this case we can work only with strict algebras without any loss of generality.
Similarly, lax T -algebras correspond to strict QLT -algebras.

Example 0.5.4. The 2-monad for (braided/symmetric) monoidal pseudomonoids is flexible
and the 2-monads for conical (co)limits of some shape are flexible, which is immediate from
their presentations.

Example 0.5.5. The 2-monad for strict monoidal categories is not flexible. Indeed, each
monoidal category gives rise to a pseudo T -algebra, where T is a strict monoid 2-monad on
Cat, via ΣM×n →M, with M×n →M given by (M1, . . . ,Mn) 7→ ((M1 ⊗M2)⊗ · · · ) and α, α0

for (TM, a, α, α0) given by the coherence theorem. This is in general not isomorphic via an
identity-on-objects morphism to a strict monoidal category.

Proposition 0.5.6. If T is a flexible 2-monad on K, then idempotents in T -AlgP split, i.e. the
equalizer of an idempotent e and the identity exists and is computed as in K.
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Proof. By a previous proposition, the inclusion T -AlgP → PsT -Alg is an equivalence of Cat-
enriched categories. It suffices to show that idempotents in PsT -Alg split, for then any strict
T -algebra isomorphic to this splitting gives a splitting in T -AlgP .

For the splitting in PsT -Alg, we can work with an arbitrary 2-monad.
Let then (e, e) : (A, a) → (A, a) be an idempotent in T -AlgP and s : B → A be the the

splitting of e in K. From e2 = e we get r : A → B s.t. s · r = e and s · r · s = e · s = s, thus

r · s = idB. We define b : TB → B as TB
Ts−→ TA

a−→ A
r−→ B,

β0 = B A = 1idB

TB TA A BraTs

ηB ηA

s

=
=

and

β = T 2B T 2A TA TB

TB TA A TA

A

B

µB µA

e
a

r

Tsa

Tr

Te

a

TaT 2s

Ts

=

e

= =

.

We leave checking that (B, b, β, β0) is an equalizer of (e, e) and idA in PsT -Alg as an exercis as
an exercise.

Remark 0.5.7. The above proposition, combined with our previous results on limits in T -AlgP ,
shows that T -AlgP has products, inserters, equifiers and splittings of idempotents whenever
T is flexible. Conversely, the 2-category T -Flex (which is biequivalent to T -AlgP ) has the
corresponding colimits for all accessible T . This naturally leads to the question:

which (co)limits can we build from these ingredients?

0.6 Flexible Colimits

Definition 0.6.1. A weight W ∈ [A,Cat] is called flexible if it is a flexible algebra for the

2-monad arising from the adjunction [A,Cat] [Ob(A),Cat]a . The colimits of lexible

weights are called flexible (co)limits.

Definition 0.6.2. Let D : A → K be a small diagram in a 2-category K, W : A → Cat
any weight. A W -weighted lax limit (resp. pseudo limit) is a representing object {W,D}L
(resp. {W,D}P ) for the 2-functor C 7→ [A,Cat]L(W,K(C,D)) (resp. [A,Cat]P (W,K(C,D)).
In other words, we have a 2-natural isomorphism K(C, {W,D}L) ∼= [A,Cat]L(W,K(C,D))
(resp. K(C, {W,D}P ) ∼= [A,Cat]P (W,K(C,D))).

There is also an analogous notion of colax limits.
The notions of lax/pseudo/colax W -weighted colimits (e.g. W �PAD) is defined dually in Kop.
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Example 0.6.3. Let A = {0 → 1 ← 2}, D = A
f−→ B

g←− C in K, W = ∆1. A pseudo-natural
transformation ∆1 → K(X,D−) amounts to three 1-cells and two invertible 2-cells

X C

A B
f

g

k2

k0 k1

∼=
∼=

and the pseudo pullback is the universal such diagram.
Note that this is similar to the iso-comma object, but it is not isomorphic to it: the two

objects are just equivalent.

The following proposition shows that pseudo/lax limits do not give a new notion of limits:
they still are weighted limits, but for a different weight.

Proposition 0.6.4. The lax (resp. pseudo) limit of a 2-functorD : A→ K weighted byW : A→
Cat is given by the QLW -weighted colimit of D (resp. QW -weighted).

Proof. This follows fomr the defining isomorphism [A,Cat]L(W,F ) ∼= [A,Cat](QL, F ) by spe-
cializing to the case F = K(C,D−).

Proposition 0.6.5. If K has PIE-limits, then it has all lax and all pseudo limits.

Proof. We know that QW and QLW can be built as iso- or lax codescent objects of free algebras
and those can in turn be built from coinserters and coequifiers, so it remains to check that the
W -weighted limit exists if W is free on a collection, which we prove in the next lemma.

Lemma 0.6.6. Let K be a 2-category with PIE-limits. Then the W -weighted limit exists for
all free algebras W ∈ [A,Cat].

Proof. First note that the limit of A(a,−) always exists since {A(a,−), D} ∼= Da by Yoneda.
Moreover, A(a,−) is the free algebra on the collection (δa)b = ∅ if b 6= a, = ∗ if b = a again by
Yoneda. The class of weights W s.t. {W,D} exists is closed under coproducts, coinserters and
coequifiers since K has PIE-limits, which follows from {colimWi, D} ∼= lim{Wi, D}. Moreover,
the left adjoint T : [ObA,Cat]→ [A,Cat] preserves colimits, so the class of collections (Cb)b∈A
s.t. T (Cb)b∈A-weighted limits exist is also closed under coproducts, coinserters and coequifiers.

We have reduced the problem to showing that the closure of the δa under PIE-colimits is all
of [ObA,Cat]. Using coproducts we can reduce to collections concentrated in a single “degree”.
This reduces the problem to the case ObA = ∗, i.e. [ObA,Cat] ∼= Cat.

Every category can be written as a lax codescent object of its nerve, considered as a diagram
of concrete categories. Clearly discrete categories are coproducts of the terminal category, so ∗
does indeed generate Cat under PIE-colimits.

Corollary 0.6.7. If K has PIE-limits, T : K → K is a 2-monad, then T -AlgP has all lax and
pseudo limits.

Proof. We have shown that T -AlgP has PIE-limits.

Theorem 0.6.8. Let K be a 2-category with splittings of idempotents. Then K has all flexible
limits. If K′ is another 2-category with the same limits and F : K → K′ is a 2-functor, which
preserves PIE-limits (and splitting of idempotents, which is automatic), then F preserves all
flexible limits.
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Proof. From the lemma we know that {TC,D} exists for all diagrams D : A → K and all
collections C = (Cb)b∈A ∈ [ObA,Cat], where T denotes the 2-monad for [A,Cat]. Since iso-
descent objects can be built from coinserters and coequifiers, it follows that {QW,D} exists for
all weights W .

Finally, using splittings of idempotents, we find that {W,D} exists for all flexible W : indeed,
recalling that W is a retract of QW we can write it as a (co)splitting of an idempotent on QW .

Note that the proof so far actually shows that the flexible weights in [A,Cat] are the closure
of the representables under PIE colimits and (co)splittings of idempotents: the argument above
shows one inclusion, while the other follows from the fact that T -Flex ⊂ T -AlgS is closed under
PIE-colimits and splittings of idempotents.

To prove the second claim, we consider the class of all weights W ∈ [A,Cat] (for a fixed

A) such that for all diagrams D : A → K the comparison morphism F{W,D} F−→ {W,FD} is
an isomorphism. This contains the representables A(a,−) since both sides of the comparison
map are then FDa (details left as an exercise) and the class is closed under PIE-colimits and
splitting of idempotents because F preserves the corresponding limits by assumption. Since the
closure of representables is the class of all flexible weights, it follows that F preserves flexible
limits.

Remark 0.6.9. In the proof we have seen that flexible weights are precisely the closure of the
representables under PIE-colimits and (co)splittings of idempotents. The second part of the
theorem is purely a formal consequence of this.

Corollary 0.6.10. Let T be an accessible 2-monad on a complete and cocomplete 2-category
K. Then T -Flex is closed in T -AlgS under all flexible colimits. In particular, flexible colimits
of flexible monads are flexible and flexible colimits of flexible weights are flexible.

Proof. The theorem implies that T -Flex has all flexible colimits and the inclusion T -Flex →
T -AlgS preserves them. This simply means that a flexible colimit of lexible algebras, computed
in T -AlgS , is again flexible.

Corollary 0.6.11. The weights for products, inserters, equifiers and splittings if idempotents
are all flexible.

Proof. We know that representable weights are free, hence flexible. The Yoneda isomorphism
W �A Y ∼= W shows that W is the W -weighted colimit of flexible weights. In particular,
the weight for inserters can be written as coinserter of flexible weights, so it is flexible by the
theorem that T -Flex is closed under coinserters. The other weights follow in the same way.

We can summarize our results about limits in T -AlgP as follows:

Proposition 0.6.12. If K has PIE-limits, then so does T -AlgP and they are preserved by
UP : T -AlgP → K. This class includes all pseudo and lax limits. If K is locally κ-presentable
and T is flexible, then T -AlgP has all flexible limits and they are preserved by UP .

Proof. We proved the statements about pseudo/lax limits above. The second statement follows
from the fact that T -AlgP has splittings of idempotents if T is flexible. UP preserves them, so
the claim follows from the above theorem.

Remark 0.6.13. Even though T -Flex has all flexible colimits, the same is not true for the
biequivalent 2-category T -AlgP .
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Example 0.6.14. Consider the 2-monad T on Cat with T -AlgP = Lex, with finitely complete
categories and finite limit preserving (i.e. left exact) functors. If Lex had flexible limits, it
would have a pseudo initial object, but any pseudo initial object is a strict initial object and
Lex has no such thing: the two functors c0, c1 : A→ {0 ∼= 1} are left exact and distinct for all
finitely complete (in fact all non-empty) A.

0.7 Weak limits and bilimits

Definition 0.7.1. Let A,B be bicategories, W : A→ Cat and D : A→ B pseudofunctors. A
W -weighted bilimit of D (also called weak limit or bicategorical limit) is an object {W,D}b with
a pseudonatural equivalence

B(B, {W,D}b) ' Ps[A,Cat](W,B(B,D−))

of categories. The notion of bicolimit is defined dually in Bop.

Example 0.7.2. A bi-initial object is an object I ∈ B s.t. each B(I,B) is equivalent to the
terminal category. we have Ps[A,B] = ∗, so Ps[A,B](W,B(D,−)) ' ∗ for all B (NOT SURE
ABOUT THIS, I THINK IT SHOULD BE: Ps[A,Cat](W,B(D−, B)) ' B(I,B) ' ∗ for all B)

Note that Lex does have a bi-initial object given by ∗, since any left exact functor ∗ → C

sends ∗ to a terminal object and all terminal objects are uniquely isomorphic.

Proposition 0.7.3. If A,K are 2-categories, W : A→ Cat, D : A→ K is a 2-functor and the
pseudolimit of D weighted by W exists, then {W,D}p is a bilimit.

Proof. Note that [A,Cat]p ⊆ Ps[A,Cat] is a full sub-2-category, so

Ps[A,Cat](W,K(B,D−)) ' [A,Cat]p(W,K(B,D−))

under our assumptions. Clearly any 2-natural isomorphism is in particular a pseudonatural
equivalence.

From the bicategorical Yoneda lemma it follows that bilimits are unique up to essentially
unique equivalence. Thus in the above situation any bilimit is equivalent to the pseudolimit.

Remark 0.7.4. In general {W,D} 6' {W,D}b. For example let W = ∆1 be the conical weight
on the span category. The diagram

∗

∗ {0 ∼= 1}

in Cat has {W,D} =, but the diagram

∗ ∗

∗ {0 ∼= 1}

1

0

1

∼=
=

defines a pseudocone, so {W,D}p ' {W,D}b is not empty.
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Proposition 0.7.5. Let K be a 2-category with flexible limits, A be a 2-category and W : A→
Cat, D : A→ K be 2-functors. If W is flexible then {W,D} ' {W,D}b. In other words, flexible
limits are bilimits.

Proof. Since eW : QW →W is a surjective equivalence in [A,Cat], it induces an equivalence

K(C, {W,D}) ' [A,Cat](W,K(C,D−))

e∗W' [A,Cat](QW,K(C,D−))

' [A,Cat]p(W,K(C,D−))

' K(C, {W,D}p).

Since pseudolimits are bilimits, the conclusion follows.

Using this notion we can show that T -Algp is weakly cocomplete.

Theorem 0.7.6. Let K be complete and cocomplete and T an accessible 2-monad. Let
W : A → Cat, D : A → T -Algp be 2-functors, with A small 2-category. Then W �pAQ ◦D in

T -Flex is a bicolimit W �bAD of D weighted by W in T -Algp.

Proof. Note that W �pAQ ◦D is given by Q(W )�AQ ◦D (where the first Q is the pseudomor-
phism classifier in [A,Cat], while the second one is for T -Algs). Since Q(W ) is flexible, so is
W �pAQ ◦D. From this we get isomorphisms and equivalences as follows

T -Algp(W �
p
AQ ◦D,A)

'←− T -Algs(W �
p
AQ ◦D,A)

∼= [A,Cat]p(W,T -Algs(Q ◦D−,A))
∼= [A,Cat]p(W,T -Algp(D−,A))

which are 2-natural in A. The first one has a pseudonatural inverse, so W �pAQ ◦D is indeed
a bicolimit of D weighted by W .

Corollary 0.7.7. In the above situation, T -Algp has all small bilimits and bicolimits.

Proof. The theorem shows that T -Algp has bicategorical coproducts, bicoequalizers and bi-
copowers by small categories, since the diagrams for all these can be chosen to be strict 2-
categories and 2-functors. Ross Street showed in the Errata to “Filtrations in bicategories”
that these can be used to construct all small bicolimits. The claim about limits follows analo-
gously (we have all pseudolimits!).

We have the following result about preservation of bilimits.

Proposition 0.7.8. Any biequivalence preserves bilimits and bicolimits.

Proof. The usual proof “categorifies”: given a biequivalence F : K→ L, D : A→ K a diagram,
W : A→ Cat a weight, we have

L(X,F{W,D}b) ' L(FY, F{W,D}b) (F essentially surjective)

' K(Y, {W,D}b) (F equivalence on Hom-categories)

' Ps[A,Cat](W,K(Y,D−))

' Ps[A,Cat](W,L(FY, FD−))

' Ps[A,Cat](W,L(X,FD−))

so F{W,D}b ' {W,FD}b by bicategorical Yoneda.
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Remark 0.7.9. More generally, left biadjoints preserve bicolimits and right biadjoints preserve
bilimits.

Corollary 0.7.10. Each flexible colimit in T -Flex is a bicolimit in T -Algp.

Proof. We know that flexible colimits are bicolimits, so they are preserved by the biequivalence
T -Flex→ T -Algp.

Example 0.7.11. The diagram

T 3A T 2A TA A
Ta

µA a

exhibits A as bicategorical iso-codescent object of

∆≤2 → T -Algp

[n] 7→ Tn+1A.

To see this note that QA is the (strict) iso-codescent object of the diagonal in T -Flex, so
QA is also a bicategorical iso-codescent object in T -Algp. Composing with the equivalence
eA : QA → A in T -Algp, we obtain the above diagram. It is still a bicategorical iso-codescent
object, since these are only defined up to equivalence.

To summarize, we have shown that Up : T -Algp → K has many of the nice properties of
U : T -Alg→ C of 1-monads:

(i) From the exercises we know that Up is “conservative”, i.e. it reflects equivalences in K.

(ii) If K is complete and cocomplete and T is accessible, then T -Algp is bicategorically com-
plete and cocomplete.

(iii) The diagram

T 3A T 2A TA A
Ta

µA a

shows that each algebra is canonically a bicolimit of free algebras.

(iv) The following lemma shows that Up : T -Algp → K also has a left biadjoint.

Lemma 0.7.12. If J : A → B is a biequivalence with inverse Q and FJ ' A(A,−), then
F ' B(JA,−). In particular, we have T -Algp(JTA,−) ' K(A,Up−).

Proof. The second claim follows from the first. In fact, taking F ∼= K(A,Up−) yields FJ ∼=
T -Algs(TA,−). For the first claim we have

B(JA,−) ' A(QJA,Q−) ' A(A,Q−) ' FJQ(−) ' F

since QJ ' id and JQ ' id.

Remark 0.7.13. One can say a little more about this left biadjoint: it is given by the 2-functor
JT and the functors T -Algp(JTA,B) → K(A,UpB) are surjective equivalences. This follows
from Theorem 5.1 in Blackwell-Kelly-Power’s “Two-dimensional monad theory”.

We saw Up : T -Algp → K behaves very similar to U : T -Alg→ C for 1-monads on a 1-category
C, if we work up to equivalence everywhere. In practice, it is often convenient to work with the
stricter structures such as T -Flex. For example, constructing the free finitely complete category
with a group object on the free monoidal category with a monoid is harder to do if we only use
bicolimits in T -Algp.
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0.8 Coherence Theorems

A major theme of this course was the use of strict structures to study weak ones. A natural
question we can ask is the following: under what conditions on the 2-monad T is every pseudo
T -algebra equivalent to a strict one?

We have shown that this is true for flexible T , but this is not necessary: for example MacLane’s
coherence theorem implies that the 2-monad for strict monoidal categories also has this property.

In the case where K is locally presentable and T accessible, we can make this more precise.
Let T ′ = QT be the pseudomorphism classifier of T in 2-Mndκ(K). Then we have an equiv-

alence eT : T ′ → T in 2-Mndκ(K)p and an isomorphism of 2-categories PsT -Alg ∼= T ′ -Algp.
Moreover e∗T : T -Algs → T ′ -Algs has a left 2-adjoint (eT )∗. Since

T -Algs → T ′ -Algs
J−→ T ′ -Algp

corresponds to the natural inclusion T -Algs → PsT -Alg, this inclusion has a left 2-adjoint
(eT )∗Q.

Definition 0.8.1. We say that the full coherence theorem holds for T if the unit of the above
adjunction is an equivalence in PsT -Alg. In this case every pseudo T-algebra is canonically
equivalent to a strict one.

Proving this coherence theorem is possible if we make some additional assumptions on T , for
example that T preserves certain iso-codescent objects. Generalizing slightly, we can consider
an arbitrary monad morphism ϕ : S → T (instead of eT : T ′ → T ).

Proposition 0.8.2. Let K be complete and cocomplete, S, T accessible. If both S and T
preserve iso-codescent objects of reflexive coherence data (keeping track of the degeneracies),
then the unit of the 2-adjunction

T -Algs S -Algs S -Algp

ϕ∗

ϕ∗

J

Q

is an equivalence if and only if each ϕK : SK → TK is an equivalence in K.

Proof. The unit is given by the composition A
ηA

JQA
JηQA−−−→ ϕ∗ϕ∗QA so this is an equivalence

for every A if and only if each ηQA is an equivalence. Since both S, T preserve iso-codescent
objects of reflexive codescent data, so do Us and ϕ∗. Since these are flexible colimits and QA is
such an iso-codescent object of a reflexive codescent datum where each algebra is free, it suffices
to check that ηSK : SK → ϕ∗ϕ∗SK is an equivalence in S -Algp for all K ∈ K. This unit is up

to isomorphism given by SK
ϕK−−→ ϕ∗TK, which is an equivalence in K by assumption, hence an

equivalence in S -Algp. The converse follows, since SK is a retract of QSK in S -Algs, so unit
equiv. ⇒ ηQSK equiv. ⇒ ηSK equiv. ⇒ ϕK equiv.

Proposition 0.8.3. Let K be a locally κ-presentable 2-category and F : K→ K a κ-accessible
2-functor. If F preserves W -weighted colimits for some weight W , then so does the free κ-
accessible 2-monad T (F ) : K→ K on F .

Proof. The underlying 2-functor of T (F ) is given as colimit of the chains Xβ, β < κ defined by
X0 = idK, Xβ+1 = idK +F ◦Xβ, Xα = colimβ<αXβ for limit ordinals (Kelly). By transfinite
induction we see that each Xβ preserves W -weighted colimits.
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Definition 0.8.4. A weight W is called sifted, if W �A− : [A,Cat] → Cat preserves finite
products.

Using this, one can show that the left Kan extension of W along the diagonal ∆: A→ A×A

is W ×W (pointwise product). This implies the usual diagonal lemma for sifted colimits and
therefore that X ↪→ F (X,X) preserves W -colimits if both F (−, X) and F (X,−) preserves
W -colimits for each fixed X.

Using this we can prove the following

Lemma 0.8.5. If D : A→ 2-Mndκ(K) is a diagram s.t. each Da preserves W -weighted colimits
and W : Aop → Cat is sifted, then W �AD in 2-Mndκ(K) also preserves W -weighted colimits.
More precisely this colimit is preserved by 2-Mndκ(K) → [K,K]κ. This can be done, since
W �AD ◦W �AD is the W -weighted colimit of the diagonal a 7→ Da ◦Da (by our assumption
that W is sifted). To check associativity one uses the fact that this also holds true for the triple
composite.

Remark 0.8.6. A more conceptual argument is possible if the {W}-cocontinuous κ-accessible
endo-2-functors are coreflective in [K,K]κ, for when we get a monoidal 2-adjunction, which lifts
to 2-categories of monoids: thus the inclusion

2-Mnd{W}cocts(K)→ 2-Mndκ(K)

has a right adjoint, so all colimits are preserved by this inclusion. This holds in many cases of
interest and it always holds, if we assume Vopěnka’s principle.

Some examples of sifted colimits are lax/iso codescent objects of reflexive codescent data and
reflexive inverters

• • • 1id
r

=

Corollary 0.8.7. If the κ-accessible 2-monad T preserves reflective codescent objects, then so
does QT = T ′.

Proof. Combine the proposition and the lemma: QT is a reflective iso-codescent object of a
diagram of iterated free monads on T .

Theorem 0.8.8. The full coherence theorem holds for accessible 2-monads on a locally pre-
sentable K, which preserve iso-codescent objects of reflexive codescent data.

Proof. T ′ = QT and T preserves reflexive iso-codescent objects, so we only need to show that
(eT )K : T ′K → TK is an equivalence in K. This follows from the fact that eT is a surjective
equivalence in 2-Mndκ(K)p, so in particular an equivalence in [K,K]κ.

Remark 0.8.9. A more direct argument is given by Lack in “Codescent objects and coherence”
without using locally presentable categories, but a weaker form of codescent diagrams.

Applying these arguments to the 2-monads for strict monoids and pseudomonoids we can
reduce the coherence theorem for such to the case of free (pseudo-)monoids.

Let K be a locally κ-presentable 2-category with a monoidal structure s,t, − ⊗ − preserves
κ-filtered colimits in each variable. Let T be the 2-monad for strict monoids, S the 2-monad
for pseudomonoids. Assume that − ⊗ − preserves iso-codescent objects of reflexive codescent
diagrams (or maybe even all sifted colimits). Finally, assume that the F -cocontinuous endo-
2-functors in [K,K]κ are coreflective for F = {refl. iso-codescent sifted}. It follows that both
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S and T preserve iso-codescent objects of reflective codescent diagrams. This is for example
the case for F = {sifted} , K = Cat/CatX×X . Showing that each pseudomonoid is equivalent
to a strict one now boils down to checking that each SK → TK is an equivalence in K. In
the case of Cat/CatX×X we can reduce further to levelwise finite discrete categories. This
follows from the fact that each category is the lax codescent object of its nerve, considered as
a diagram of discrete categories. So we have reduced the coherence theorem to checking that
the natural strong monoidal functor from the free monoidal category on {1, . . . , n} (which is
simply the discrete category on the free monoid on {1, . . . , n}) is an equivalence. As in the
case of the universal property of ∆+, the hard part is constructing the strong monoidal functor
T{1, . . . , n} → S{1, . . . , n}. Writing Ai for the object corresponding to i, we can send a word
in the Ai to the corresponding word with “leftmost” bracketing (empty word 7→ unit). Using
associators and unitors, it is possible to write down the data of a monoidal functor on this.
Checking that this is monoidal is the essence of MacLane’s coherence theorem.

Question: Is every monoidal V-category (V lfp cosmos) equivalent to a strict monoidal V-
category?
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